
Are Evolutionary Rule Learning Algorithms Appropriate for
Malware Detection?

M. Zubair Shafiq, S. Momina Tabish, Muddassar Farooq
Next Generation Intelligent Networks Research Center (nexGIN RC)

National University of Computer & Emerging Sciences (FAST-NUCES)
Islamabad, 44000, Pakistan

{zubair.shafiq,momina.tabish,muddassar.farooq}@nexginrc.org

ABSTRACT
In this paper, we evaluate the performance of ten well-known
evolutionary and non-evolutionary rule learning algorithms.
The comparative study is performed on a real-world clas-
sification problem of detecting malicious executables. The
executable dataset, used in this study, consists of a total of
189 attributes which are statically extracted from the ex-
ecutables of Microsoft Windows operating system. In our
study, we evaluate the performance of rule learning algo-
rithms with respect to four metrics: (1) classification ac-
curacy, (2) the number of rules in the developed rule set,
(3) the comprehensibility of the generated rules, and (4) the
processing overhead of the rule learning process. The results
of our study highlight important shortcomings in evolution-
ary rule learning classifiers that render them infeasible for
deployment in a real-world malware detection system.

Categories and Subject Descriptors
D.4.6 [Software]: Security and Protection—Invasive soft-
ware

General Terms
Algorithms, Experimentation, Security

Keywords
Genetics Based Machine Learning, Malware Detection

1. INTRODUCTION
The genetic based machine learning systems, more com-

monly known as GBML, have become significantly more so-
phisticated compared with primitive versions of the learning
classifier systems (LCS) proposed by John Holland in 1970s.
A number of LCS variants exist that include evolutionary
rule learners, evolutionary neural networks and other hy-
brid schemes. But evolutionary rule learners have been the
most popular amongst all. They can be further subdivided
into Michigan style, Pittsburgh style, anticipatory, and it-
erative rule learners [1]. Most of the recent work in LCSs
is focused on classical Michigan- and Pittsburgh-style evo-
lutionary rule learners that include but are not limited to
XCS, UCS, GAssist and GALE.

Copyright is held by the author/owner(s).
GECCO’09,July 8–12, 2009, Montréal Québec, Canada.
ACM 978-1-60558-325-9/09/07.

In this paper, we evaluate several well-known evolutionary
rule learning classification algorithms (XCS, UCS, GAssist-
ADI, GAssist-Intervalar, SLAVE) using a real-world clas-
sification problem of malware detection. We also compare
these evolutionary rule learning algorithms with five other
well-knwon non-evolutionary rule learning algorithms: RIP-
PER, SLIPPER, PART, C4.5 rules, RIONA. The malware
detection problem has several stringent constraints other
than classification accuracy, such as comprehensibility of
the developed solution (for malware forensic experts) and
processing overheads (for realtime deployment). Therefore,
the malware detection problem is relatively more challeng-
ing because accuracy and efficiency of classification must be
optimized simultaneously.

The executable dataset, used in this study, consists of
11, 786 executable files for the Microsoft Windows operating
system in Portable Executable (PE) format [3]. A total of
189 attributes are statically extracted from the executables.
The executable dataset consists of two types of executables:
benign and malicious. We have collected 1, 447 benign PE
files from the local area network of our virology lab. We have
obtained 10, 339 malicious executables from a publicly avail-
able malware database called ‘VX Heavens Virus Collection’
[4].

In order to undertake a comprehensive study, we use four
performance metrics for comparison: (1) classification accu-
racy, (2) the number of rules, (3) comprehensibility of the
rules, and (4) processing overhead. To factor out implemen-
tation related bias in our study, we use the implementations
of rule learning algorithms provided in a unified framework
called Knowledge Extraction based on Evolutionary Learn-
ing (KEEL) [2].

2. RESULTS & CONCLUSION
In this section, we provide the results of our experiments

and relevant discussions. We have used the default para-
meters of all algorithms as provided in KEEL, unless stated
otherwise. We compare the performance of classifiers with
the help of four performance metrics:

2.1 Classification Accuracy
In a typical two-class problems, such as malicious exe-

cutable detection, the classification decision of an algorithm
may fall into one of the following four categories: (1) true
positive (TP), (2) true negative (TN), (3) false positive (FP),
and (4) false negative (FN). A suitable metric for quantify-
ing classification accuracy of an algorithm, also used in this
study, is accuracy which is defined as:



Table 1: Classification accuracy of all algorithms

Algorithm Average Number Execution
Accuracy of rules time (sec)

Evolutionary Rule Based Algorithms
XCS 0.9550± 0.0057 10, 000.0 109.0
UCS 0.9847± 0.0034 9, 652.6 16.3

GAssist-ADI 0.9929±0.0013 2.6 1, 177.2
GAssist-Intervalar 0.9873± 0.0024 4.2 4, 060.9

SLAVE 0.9917±0.0013 3.3 775.1

Non-Evolutionary Rule Based Algorithms
RIPPER 0.9961± 0.0033 6.0 8.0
SLIPPER 0.9975± 0.0023 57.0 29.4

PART 0.9956± 0.0028 6.3 51.8
C4.5 rules 0.9962± 0.0031 7.4 37.0
RIONA 0.9899± 0.0052 - 2680.5

accuracy =
TP + TN

TP + TN + FP + FN

Table 1 shows the classification accuracy of all algorithms
(both evolutionary and non-evolutionary). We represent
the best evolutionary and non-evolutionary classifier with
a bold value. The best evolutionary rule learning algorithm
is GAssit-ADI, closely followed by SLAVE which also has
the average accuracy of more than 0.99. GAssist-Intervalar
and UCS have accuracies in the range of approximately 0.98.
XCS provides the worst accuracy amongst all classification
algorithms used in our study. SLIPPER outperforms rest of
the non-evolutionary rule learning algorithms. It is closely
followed by C4.5 rules, RIPPER and PART respectively.
The relatively worst classifier among non-evolutionary algo-
rithm is RIONA that provides an accuracy of approximately
0.99. It is evident from Table 1 that non-evolutionary rule
learning algorithms clearly outperform their evolutionary
counterparts in terms of accuracy.

2.2 Number of Rules
The number of rules developed by an algorithm are de-

pendent on the various input parameters. Sometimes, the
maximum possible number of rules is explicitly limited via
an input parameter. Table 1 shows that the number of rules
in XCS and UCS are limited by the MaxPopSize (=10, 000)
parameter as they try to overfit. In comparison, other evo-
lutionary rule learning algorithms utilize significantly fewer
rules for classifying a malware. Non-evolutionary rule learn-
ing algorithms also generate significantly less number of rules.
However, SLIPPER appears to be the only exception, which
generates more than fifty rules on the average.

2.3 Comprehensibility of Rules
The comprehensibility of generated rules is another im-

portant metric as it provides great help to the ‘malware
forensic experts’ in understanding the behavior and charac-
teristics of a given malware. The comprehensibility of rules
is a subjective term so we quantify it by using coarse grain
Low, Medium, and High categories.

Both XCS and UCS develop conjunctive IF-THEN rules
containing specified intervals for every attribute. Moreover,
the number of rules in the final rule set are very large (see
Table 1). Due to these obvious shortcomings, we say that the
comprehensibility of the rules generated by XCS and UCS
is Low. GAssist-ADI mostly develops rules by using single-

sided ranges and has default rules as well. The comprehensi-
bility of rules generated by GAssist-ADI can be categorized
as High. GAssist-Intervalar, similar to XCS and UCS, gener-
ates rules that contain specified intervals for every attribute.
However, the final rule set just contains only a few rules. So
the comprehensibility of the generated rules is categorized as
Medium. SLAVE uses fixed intervals (such as L1,L2,L3,L4)
to generate the fuzzy rules. It also assigns weights to the
individual rules. Overall, the comprehensibility of the rules
generated by SLAVE can be ranked as Medium. The rules
generated by all non-evolutionary rule learning algorithms
are not only simpler to comprehend but are also smaller in
number. Therefore, the comprehensibility of the rules gen-
erated by RIPPER, SLIPPER, PART and C4.5 rules can be
categorized as High.

2.4 Processing Overheads
The processing overheads are reported in Table 1 as the

average time (in seconds) required for training and test-
ing per fold of the 10-fold cross validation process. It is
evident from Table 1 that the processing overheads of all
evolutionary rule learning algorithms, except UCS, are sig-
nificantly large compared with non-evolutionary classifiers.
Malware detection systems are deployed in real operating
systems; therefore, the processing overhead is a crucial met-
ric. GAssist-ADI and GAssist-Intervalar have very large
processing overheads. The processing overheads of XCS and
SLAVE are also high. UCS is the only evolutionary rule
learning algorithm which has a processing overhead compa-
rable with non-evolutionary algorithms.

All non-evolutionary rule learning algorithms, except RI-
ONA, have acceptable processing overheads. The processing
overhead of RIONA is large because it uses a combination of
instance based learning and rule induction. For every given
test instance, it first selects the neighboring instances simi-
lar to the nearest neighbor algorithm. After selection, it de-
velops rule sets through rule induction. The complexity in-
curred due to exhaustive search of the neighboring instances
for every test instance is a major performance bottleneck.

2.5 Conclusions
In this paper, we have compared ten rule learning algo-

rithms for a real-world problem of executable malware de-
tection. The results of our study show that non-evolutionary
rule learning algorithms clearly outperform evolutionary rule
learning algorithms for every performance metric.

3. REFERENCES
[1] J.H. Holland, L.B. Booker, M. Colombetti, M. Dorigo,

D.E. Goldberg, S. Forrest, R.L. Riolo, R.E. Smith, P.L.
Lanzi, W. Stolzmann, S.W. Wilson, “What Is a Learning
Classifier System?”, Internatinoal Workshop on Learning
Classifier Systems (IWLCS), Volume 1813 of Lecture Notes
in Artificial Intelligence, pp. 3-32, Springer, 2000.

[2] J. Alcala-Fdez, L. Sanchez, S. Garcia, M.J. del Jesus, S.
Ventura, J.M. Garrell, J. Otero, C. Romero, J. Bacardit,
V.M. Rivas, J.C. Fernandez, F. Herrera, “KEEL: a software
tool to assess evolutionary algorithms for data mining
problems”, Soft Computing, Volume 13, pp. 307-318,
Springer, 2009.

[3] Microsoft Portable Executable and Common Object File
Format Specification, Windows Hardware Developer
Central, Updated March 2008.

[4] VX Heavens Virus Collection, VX Heavens website,
available at http://vx.netlux.org.


