
J Comput Virol (2010) 6:277–287
DOI 10.1007/s11416-009-0136-2

ORIGINAL PAPER

From the design of a generic metamorphic engine to a black-box
classification of antivirus detection techniques

Jean-Marie Borello · Éric Filiol · Ludovic Mé

Received: 22 December 2008 / Accepted: 7 September 2009 / Published online: 25 September 2009
© Springer-Verlag France 2009

Abstract In this paper, we propose an original black-box
approach concerning antivirus products evaluation. Contrary
to classical tests focusing on detection rates concerning a spe-
cific malware sample, we use a generic metamorphic engine
to observe the detection products behaviors. We believe that
this point of view presents a double interest: First, it offers an
original way of evaluating current antivirus products focus-
ing on the observed detection technique. More precisely, the
use of metamorphic malware guarantees the difficulty of
static signature based detection techniques to focus only on
heuristic and behavioral detection approaches. Second, by
pointing out current detection capabilities, we practically
evaluate the danger that complex metamorphic malware
could represent. To achieve this goal, we start with the
description of a generic metamorphic engine acting in two
steps: obfuscation and modeling. Then, we apply this engine
to a real mass-mailing worm and propose the resulting meta-
morphic malware samples to current antivirus products. The
observed results lead to a classification of detection tech-
niques in two main categories: the first one, relying on static
detection techniques, presents low detection rates obtained
by heuristic analysis. The second one, composed of behav-
ioral detection programs, mainly focuses on elementary
suspicious actions. In all cases, no product was able to
detect a global malware behavior. Consequently, we consider

J.-M. Borello (B)
CELAR, BP 7419, 35 174 Bruz Cedex, France
e-mail: jean-marie.borello@dga.defense.gouv.fr;
borello.jeanmarie@gmail.com

É. Filiol
ESIEA, Operational Virology and Cryptology Lab.,
53 000 Laval, France

L. Mé
SUPELEC, SSIR (EA 4039), Rennes, France

that metamorphic malware detection still represents a real
challenge for antivirus products. Through this study, we hope
to help defenders understand and defend against the threat
represented by this class of malware.

1 Introduction

Malware is a generic term used to describe all kinds of soft-
ware presenting malicious behavior. In terms of security of
computer users, malicious software is considered as major
threat. Many detection programs are based on form detec-
tion relying on byte signature to identify a specific malware.
To circumvent these detection tools, attackers have devel-
oped specific counter-measures, giving birth to more and
more advanced code mutation techniques. Among all these
techniques such as encryption and polymorphism, metamor-
phism is certainly the most advanced one. Metamorphism
consists in canceling as much as possible any fixed element
that would represent a potential detection pattern according
to byte signature matching. Here, we consider metamorphism
as a special class of self-replicating programs.

From a theoretical point of view, few results exist concern-
ing the detection complexity of code mutation techniques,
even if these notions have already been evoked in F. Cohen’s
seminal works [10]. Recently, D. Spinellis has proved [23]
that the detection of bounded-length polymorphic viruses
is an NP-complete problem. Then, E. Filiol has formalized
metamorphism by the means of formal grammars and lan-
guages [16] to extract three classes of detection complexity
according to the corresponding grammar class identified by
N. Chomsky [7,8]: polynomial complexity for class 3 gram-
mars, NP-complexity for class 1 and 2 grammars, and unde-
cidability for class 0 grammars.

123

278 J.-M. Borello et al.

From a practical point of view, very few metamorphic
malware are known to exist thanks to the difficulty of writ-
ing such complex programs. The most advanced metamor-
phic virus known is MetaPHOR [13], for which 14 000 lines
of assembly instructions (90% of the code) are dedicated to
the metamorphic engine. To change its form, this virus uses
simple instructions rewriting rules which allows its detec-
tion [16].

In this paper, we focus on metamorphic malware detec-
tion capabilities. More precisely, it was suggested in [16]
that a metamorphic malware presents few limitations from an
execution context point of view, whereas any antivirus tool
is bounded by severe time constraints. To take advantage
of this time constraint, a new class of obfuscator denoted
τ -obfuscator was introduced in [3] to delay code analysis
for a predefined time τ . Our work aims at evaluating cur-
rent antivirus products confronted by possible future threats
that metamorphic malware could represent by taking advan-
tage of the time-answer constraint from a detection point of
view. This approach allows an original black-box evaluation
of current malware detectors through their response to new
mutated forms of known malware.

The contributions of this paper are the following:

– We propose a design of a metamorphic engine corre-
sponding to a future possible threat that antivirus tools
must deal with.

– We present an original way of classifying antivirus detec-
tion techniques based on their observable behavior
towards mutated form of known malware.

– We give a precise example of our approach through the
application of our metamorphic engine on the well-known
email-worm MyDoom [15].

This paper is organized as follows. In Sect. 2 we introduce
metamorphic malware detection and its link with code obfus-
cation. In Sect. 3 we present the description of our metamor-
phic engine. In Sect. 4 we classify detection tools according
to their response to metamorphic malware obtained by the
application of the previous metamorphic engine on a real
email-worm.

2 Metamorphism and obfuscation

Metamorphic malware and code obfuscation techniques are
narrow linked subjects. Indeed, as mentioned in [9], a meta-
morphic code can be viewed as an obfuscated program.
So, detecting such a program leads to the ability to de-obfus-
cate it. Before describing our metamorphic engine approach,
we briefly introduce these two fundamental notions of obfus-
cation and metamorphism.

Barak et al. informally defined an obfuscator O as a
probabilistic compiler taking in input a program P , and

producing a new program O(P) with the same functionality
as P but being unintelligible [2]. Starting with this infor-
mal definition, they proposed a formal one based on ora-
cle access to program. Then, they proved that no obfuscator
exists according to this definition. Recently, another formal-
ization of obfuscation, based on the notion of oracle pro-
grams led to the same impossibility result [3]. Despite these
theoretical results, practical obfuscation has been intensively
investigated to protect intellectual property and especially
concerning high level languages such as JAVA and the .NET
framework [11,12]. Indeed, with such languages, the result-
ing binary contains all the information allowing us to easily
retrieve the original program structure such as names, struc-
tures, data types, etc.

Concerning malware, obfuscation schemes were used to
change the syntactic structure of the code to escape simple
form detection techniques such as pattern matching.
Metamorphic malware traditionally used basic obfuscation
transformations modifying either data flow (rewriting rules,
registers exchange) or control flow (branch insertions) to
avoid pattern detection [5]. The choice of such basic obfusca-
tion transformations was clearly evoked in [20] as follows:
“... a metamorphic virus must be able to disassemble and
reverse itself. Thus a metamorphic virus cannot utilize [...]
techniques that make it harder or impossible for its code to be
disassembled or reverse engineered by itself.” In agreement
with this point of view, many static detection approaches
based on de-obfuscation techniques (such as data flow analy-
sis [1] and slicing [25]) were developed [6,22,28]. However,
more complex obfuscation schemes based on control flow
modifications such as [5], could thwart these static detection
techniques. Being aware of static detection limitations, an
increasing number of antivirus products consider behavioral
detection, which can be divided in two classes [17]. The first
one is represented by dynamic detectors relying on sequences
of observable events such as system call traces. The sec-
ond one is composed of static verifiers relying on instruction
meta-structures (graphs, temporal logic formula). In [18],
the coverage of behavioral detection engines was assessed
with the introduction of functional polymorphic engines.
Briefly, a functional polymorphic engine was defined as a
malware embedding a non deterministic compiler to dynam-
ically produce functional variants from a high level mal-
ware description. In this paper, we focus on the temporal
constraint aspect by investigating the new threat that τ -obfus-
cation-based metamorphic malware could represent on
antivirus products.

3 Metamorphic engine description

From a high level point of view, a metamorphic engine
offers a self-replicating property which has to produce a

123

Black-box approach concerning antivirus products evaluation 279

syntactically different but semantically equivalent mutated
form. A generic description of metamorphic binary-transfor-
mation is given in [27]. Here, we present our metamorphic
engine self-replication process, which acts in two steps:

1. In the first step, known as the obfuscation step, the engine
changes its form to escape detection algorithms. The
main purpose of this step is to avoid static detection
approaches such as [4,6,9]

2. In the second step, the already obfuscated engine reverses
its own obfuscation transformations to come back to its
original form. This step, known as the modeling step,
allows the engine to re-obfuscate itself. It is worth men-
tioning here that the reverse engine in charge of the
engine modeling is itself obfuscated otherwise it could
be easily detected by pattern matching.

This section presents the design of our metamorphic
engine. More precisely, in Sect. 3.1, we focus on the obfus-
cation step. In Sect. 3.2, we describe the engine information
needed to ensure its modeling. In Sect. 3.3, we describe the
whole replication process. Finally, in Sect. 3.4, we explain
how to produce a metamorphic binary starting from the
sources of an original program.

3.1 Obfuscation step

This section presents the obfuscation step in the self-
replication process of our metamorphic engine. The obfus-
cation process has to work on both the code and the data in
a program at the same time.

Code obfuscation: The general code obfuscation scheme
detailed hereafter is inspired from [5]. Let P be a program
composed of n consecutive instructions (I1, . . . , In). This
program P is split in k consecutive blocks P = (P1, . . . , Pk).
Each of these blocks contains a random number of instruc-
tions. Let σ be a random permutation over the set [1, n] used
to randomize Pi blocks. For each Pi block, we define a new
block P ′

σ(i) with its transition. This approach is illustrated
in Fig. 1. On the left hand, we have an original program P
composed of ten instructions whose control flow is repre-
sented with arrows. The boxes illustrate the random splitting
of P in five blocks. On the right hand, the new program P ′
is obtained by permutating Pi blocks according to σ .

It is easy to see that whatever the Control Flow Graph
(CFG) of program P looks like, the execution remains the
same if after executing the last instruction of block P ′

σ(i), the
first instruction of P ′

σ(i+1) is reached. These transitions, rep-
resented with dashed arrows in Fig. 1, are the key points of
the obfuscation scheme. For instance, considering the block
containing instructions I1, I2 and I3, the execution of instruc-
tion I3 must lead to I4 as illustrated in P and P ′.

Fig. 1 Illustration of the obfuscation scheme. Original program P on
the left and the obfuscated program P ′ on the right

As the splitting is randomly generated, no syntactic pattern
can be directly extracted, according to this approach. More-
over, it was proved in [5] that the static detection of meta-
morphic malware employing such a technique in a multi path
assumption, is an NP-complete problem. In static analysis,
the multi path assumption translates the difficulty of branch
target evaluation. Indeed, considering a branch instruction,
represented as follows, “if (condition) {branch1} else
{branch2}”, the condition evaluation can be highly compli-
cated by the use of opaque predicates as detailed in [11].
Informally, a predicate is said to be opaque if it has a prop-
erty which is known to the obfuscator, but which is difficult
for the deobfuscator to deduce. Thus, if a program cannot
determine the condition value, then it has to consider the two
branches as possibly executable paths. However, the creation
of opaque predicates which are difficult to resolve is a hard
task [11]. It is also the case from a metamorphic malware
point of view. Instead of focusing on opaque predicate crea-
tion, we deliberately choose to take advantage of the malware
time detection constraint evoked in [3,16].

In other words, each block P ′ transition is τ -obfuscated
by dynamically computing the target destination. Several
approaches were detailed in [3] to τ -obfuscate programs.
In order to facilitate time measurement, we decided to use
an obfuscated loop which computes the destination address.

123

280 J.-M. Borello et al.

So, for the rest of the article, the τ delaying time is mea-
sured thanks to the number of iterations in the transitions
loops. Here, we only present a sketch of our τ -obfuscation
design for two reasons. Firstly, from an ethical point of view,
giving a complete description of the implementation could
lead an attacker to directly write such a metamorphic engine,
which is a non affordable risk. Secondly, according to the
experiment result, τ -obfuscation seems to have no impact on
current detection tools. So, τ -obfuscation does not appear to
be the key component of the metamorphic engine. To achieve
τ -obfuscation, the idea consists in choosing a random func-
tion f for each transition. Then the target address is deter-
mined by the number of compositions of this function f . Of
course, this simple loop is obfuscated using classical tech-
niques such as rewriting rules to avoid any pattern.

Data obfuscation: A simple way to protect data is encryp-
tion as used in polymorphic malware, for example. In this
case, the malware execution begins with a (polymorphic)
decryption routine acting on the rest of the code and data.
After this decryption, all the code and data represent a
possible detection pattern. Thus, a practical detection [24,
pp. 451–458] consists in emulating the decryption routine to
come back to classical pattern matching detection techniques
on the decrypted program.

To avoid such a detection, a better approach consists in
decrypting data just before they are used and re-encrypting
them just after. By data we mean a block of data which cannot
be divided without a loss of semantics (for instance, a string,
a switch table, a structure, etc). This technique known as
on-the-fly encryption is commonly used in malware protec-
tion (DarkParanoid [19] and W32/Elkern [14]). More pre-
cisely, let f be a function taking as parameter a data block,
denoted D. Our original program P computes the function
f (D). Let E be a symmetric encryption scheme. We modify
the original program P to get the program P ′ defined as fol-
lows: P ′ contains (in its binary representation) an encryption
key K and the encrypted data C = EK (D). Then, during its
execution, P ′ starts with the decryption of the encrypted data
C . After that, P ′ computes f with the previous decrypted data
D. Finally, P ′ re-encrypts this data D with the same key K .
So, without the knowledge of the key K , the protection of D
is guaranteed by the robustness of the encryption scheme.

The data obfuscation process consists in randomizing the
key value and its position in such a way that only the piece of
code which previously had access to this key has access to the
new one. The new program contains the new encryption K ′
and the new encrypted data C ′ = EK ′(D). In this case, the
decryption key can only be discovered by disassembling the
code. Thus, the robustness of data obfuscation directly relies
on the robustness of the previous code obfuscation guaran-
teed by τ -obfuscation.

3.2 Modeling step: the necessity of extra information

This section presents the modeling step in the self-replication
process of the metamorphic engine. From now on, we con-
sider that the metamorphic engine M is already obfuscated,
as presented in Fig. 1. The obfuscated metamorphic engine
is denoted M ′ in the rest of the section.

From its entry point, M ′ must be able to extract its structure
in memory in order to re-obfuscate itself. Without any partic-
ular information on the way it was produced, M ′ would have
to disassemble itself as any other external program would
have to. In this case, the engine would be confronted with
the difficulty of reversing its own obfuscation scheme. So,
to easily reverse its own code, M ′ must embed extra infor-
mation allowing its de-obfuscation without simplifying the
detection.

According to the obfuscation scheme presented in
Sect. 3.1, coming back to M means recovering the original
sequence of code blocks (M1, . . . , Mn) and the original data
blocks. More precisely, the extra information to be embedded
is composed of:

1. the description of the original sequence of code blocks
(P1, . . . , Pn);

2. the description of data blocks with their corresponding
encryption key;

3. the description of memory references.

With these three elements, the metamorphic engine M ′ is able
to come back to its exact original (de-obfuscated) form M .
We shall explain the necessity of references. At binary level,
each logical element in a program (a block of data, an instruc-
tion, an import table entry, etc.) is represented by its address.
As these addresses change during each mutation according
to the previous obfuscation scheme, the metamorphic engine
must be able to find and update these references according
to the new position of the corresponding element. Unfor-
tunately, the exact determination of references in a binary
program is difficult.

To illustrate this problem, let us consider the following
assembly instruction: cmp eax, 0402000h. This
instruction compares the value contained in the eax
register with the hexadecimal value 402000.Considering
the metamorphic engine (or any disassembler), the problem
consists in determining the semantics of this value. In other
words, is it an address or not? Now, let us consider the two
following programs described in C language: both of them
declared a constant value MY_FLAG in line 1 and a global
string Global1 in line 2. The main function only declares
a variable in line 6, whose value is supposed to be defined later
in the main function. The key point is the if statement line
8 which compares var1with MY_FLAG in the first source
and with Global1 in the second source.

123

Black-box approach concerning antivirus products evaluation 281

Fig. 2 Illustration of the
difficulty of precise references
evaluation

Considering the particular case where the compilation
process places the Global1 string at address 402000 in
the two resulting binaries, line 8 corresponds to the previous
assembly instruction. It is worth mentioning that this extreme
academic case is not very probable, but clearly illustrates
the problem of the references. Concerning our metamorphic
approach, code and data are randomly dispersed throughout
the program during the replication. So, considering the previ-
ous example, the address of Global1will be different after
replication. And then, to be correct, in the statement cmp
eax, 402000h, the hexadecimal value must be updated
by the new address of Global1 only in the second pro-
gram’s binary (Fig. 2).

3.3 Metamorphic engine replication with no constant
kernel

At this stage we have illustrated :

1. how to obfuscate a program to guarantee that it cannot
be disassembled under a predefined time τ in Sect. 3.1;

2. which information is mandatory to create a program able
to reverse this previous obfuscation scheme in Sect. 3.2;

We now have to describe how the metamorphic engine can
link these two steps to achieve its self-replication. Figure 3
illustrates this replication process. For the purpose of sim-
plicity, we only present how the description of the original
code blocks sequence is used in the replication process.

Let M ′ be an already-obfuscated version of the metamor-
phic engine M , as described in Sect. 3.1. M ′ embeds its own
rebuilding information, as presented in Sect. 3.2. More pre-
cisely, M ′ is here composed of 20 instructions (I1, . . . , I20)
distributed in 7 blocks (M ′

1, . . . , M ′
7) as represented in (1).

Each instruction index represents its execution order, I1

stands for the first executed one whereas I20 is the last instruc-
tion. Each block M ′

i contains a random number of instruc-
tions and a random position in the program M ′. At the end of
each block, another one denoted τ ′

i represents the τ -obfus-
cated branch whose destination is highlighted by pointed
arrows. As previously mentioned, the destination of this block
cannot be determined before the τ ′

i duration.
Without loss of generality, let us assume that the rebuild-

ing information is used by instruction I4 to start the mod-
eling step. Then, this instruction has a reference to the first
block description represented in (2). This description gives
the position and the size of each M ′

i block. So, M ′ can

disassemble M ′
1, then M ′

2 until the last block M ′
7. From

now, M ′ has its own instructions sequence (I1, . . . , I20) in
memory as illustrated in (3). The re-obfuscation starts here,
as described in Sect. 3.1 whose results is illustrated in (4):
new code blocks are randomly generated (M ′′

1 , . . . , M ′′
6) with

their corresponding τ -obfuscated transitions (τ ′′
1 , . . . , τ ′′

6).
The original code block sequence (M ′′

1 , . . . , M ′′
6) is inserted

in a new data block represented in (5). The key point con-
sists in updating the reference to this rebuilding information
in instruction I4, to be sure that this instruction will use the
new code blocks description. Finally, the entry point of M ′′ is
defined in its header to point to the position of I1 instruction
in M ′′.

From a detection point of view, rebuilding information
presents no constant part nor constant position between the
two mutated programs. Thus, we assume that reaching
rebuilding information means to be able to disassemble any
obfuscated program until identifying the part of the program
using this information.1 In this case, any disassembler would
be confronted with the robustness of the code obfuscation
scheme. And then detection is delayed during the amount of
time defined by τ -obfuscation.

3.4 Embedding the metamorphic engine in another
program

We have illustrated how the metamorphic engine can repro-
duce itself according to its rebuilding information. However,
the remaining question is the origin of this information. In
other words, how can we get the first obfuscated metamorphic
binary? First, our metamorphic engine works at binary level
taking advantage of the dissembling difficulty in x86 archi-
tecture. Second, the purpose of the engine is to be generic,
in order to transform high level language programs to make
them metamorphic. Here we only focus on programs written
in C language. Thus, we have to modify the compilation pro-
cess to build the first metamorphic binary in the same way the
metamorphic engine does. This is achieved by inserting an
obfuscator in the compilation process as illustrated in Fig. 4
step (2).

The compilation process starts normally by taking two
inputs programs, the metamorphic engine and the to-be-
obfuscated program. First, the compiler produces the

1 The question of heuristic detection of the permuted code is not
mentioned here.

123

282 J.-M. Borello et al.

Fig. 3 Illustration of the
replication process of the
metamorphic engine

Original
program
sources

ObfuscatorCompiler

Linker
Metamorphic

binary

Assembly
sources

Obfuscated
assembly
sources

Assembler

Object
files

(1) (2)

(3)

(4)

Metamorphic
engine
sources

Fig. 4 Illustration of the production of the first metamorphic binary
from the metamorphic engine and an original program

corresponding assembly sources. Second, the obfuscator
transforms these sources, as presented in Sect. 3.1. The
obfuscated assembly sources now contain all the rebuilding
information for the whole program. Then, the assembler

produces object files which will be linked with additional
libraries to obtain the final metamorphic binary just like any
classical assembling process.

4 Malware detectors classification

This section aims at empirically evaluating the impact of our
metamorphic engine approach on the state of the art detec-
tion tools. In Sect. 4.1, we present the way we transform the
well-known email-worm MyDoom into a metamorphic one.
In Sect. 4.2, we describe the evaluation platform. In Sect. 4.3,
we present the results of our experiments.

4.1 Building a metamorphic version of MyDoom

All our experiments are based on the mass-mailing worm
MyDoom.A [15] discovered in January 2004. The choice of
this malware was motivated by two major reasons:

123

Black-box approach concerning antivirus products evaluation 283

Backdoor
(xproxy.c)

Obfuscated
Backdoor

(xproxy.dll)

xproxy.inc

MyDoom
sources

Metamorphic
worm

Metamorphic
engine
sources

(1) (2) (3)

Fig. 5 Illustration of the incorporation of the obfuscated backdoor
(xproxy) in the metamorphic email-worm (MyDoom)

1. the worm sources [26] are available in C language, which
allow us to directly use our metamorphic engine;

2. according to its virulence (number of emails generated),
MyDoom is considered as the most serious email-worm
attack ever known [24].

Briefly, MyDoom is a worm propagating through a
peer-to-peer client and by emails. Its payload is composed of
two parts: first, this worm tries a Denial Of Service (DOS) on
a specific web site. Second, MyDoom embeds an encrypted
Dynamic Link Library (DLL) which represents a backdoor
listening on a TCP port ranging between 3127 and 3198. This
DLL can be viewed as a standalone malware, loaded by the
Windows Explorer.exe process, and waiting for mali-
cious commands. Thus, we have two malware candidates for
detection purpose: MyDoom, and its backdoor. In the original
sources of MyDoom, the CopyFile function is in charge
of the worm replication. To use our metamorphic engine,
we have modified the sources of MyDoom to replace all the
CopyFile calls to the replication entry point of the meta-
morphic engine. Concerning the backdoor, its detection could
make MyDoom suspicious according to heuristics detection
techniques. As a non-replicating program the backdoor does
not use the metamorphic engine but has to be obfuscated as
the worm is.

The generation of the metamorphic email-worm is
illustrated in Fig. 5: first the backdoor is obfuscated as
explained in Sect. 3.1 to obtain the obfuscated backdoor
(xproxy.dll) in step (1). Then, the backdoor binary has
to be encrypted as the worm normally does. This encrypted
binary is then translated as a table of hexadecimal values in
a source file (xproxy.inc). This step is denoted in (2).
Finally, the metamorphic email-worm is produced as illus-
trated in Fig. 4 from the previous xproxy.inc file, the
metamorphic engine and MyDoom sources in step (3).

4.2 Evaluation platform

To observe the malware’s behavior in a safe and protected
environment, a target platform was installed. The adopted
solution consisted in using virtual machines for two reasons:
first, to prevent any infection of the real operating system
from the malware. On this subject, we verified beforehand
that MyDoom did not try to detect any virtualization

environment. Indeed, malwares are used to changing their
behavior in case of virtualization. Second, virtual machines
allowed us to easily come back to a clean state independently
of detection success by restoring the safe machine image.
The evaluation platform was composed of two components,
namely the guest and the host machine.

Guest machine: VMWare workstation was chosen as the
emulating environment. Windows XP Pro SP3 was installed
with up-to-date hot fixes to represent a personal user config-
uration. To observe the worm propagation, a mail client and
a peer-to-peer one were configured. An ISP account was also
defined with different parameters and especially the SMTP
server address. This guest machine configuration was cloned
according to the number of antivirus to be tested. An antivirus
program was installed on each configuration.

Host machine: A bridge was installed between the two
machines to establish a network communication between
them. A fake SMTP server listening on TCP port 25 was
in charge of collecting the worm’s mail. All the guest traffic
was oriented toward the bridge to reach the host machine.

In order to validate the metamorphic engine replication,
and to bring representative results, each sample of malware
used in the followings experiments was produced as follows:

1. a metamorphic email-worm obtained, as illustrated in
Fig. 5, was installed on a guest machine containing a
detection product. The parameters of the metamorphic
engine were configured according to the experiments
(code block sizes and τ iteration values).

2. this worm was then executed on the guest machine until
two mutated worms were obtained if the worm was not
detected. These two worms were collected from the
peer-to-peer client and from emails by the host machine.

3. the virtual environment was finally restored to a clean
state and this process was renewed (step 2) with the pre-
viously collected malware until the desired sample of
worms was obtained.

4.3 Experiment results

To be as general as possible, we started with 16 of the most
used antivirus software regardless of their detection tech-
niques. In terms of license several products present ambigu-
ities concerning black-box evaluations: “You shall not use
this Software in automatic, semi-automatic or manual tools
designed to create virus signatures, virus detection routines,
any other data or code for detecting malicious code or data.”
To be as neutral as possible, all the results are given anon-
ymously denoted by AV1 to AV16. All detection software
were configured according to their best detection capacities.

123

284 J.-M. Borello et al.

Concerning the metamorphic engine parameters, τ -obfus-
cation was initialized to a single iteration and the code blocks
size was set to contain from 1 to 5 instructions. For detection
purpose, each worm was installed on a guest machine and
submitted to on demand detection. Then, non detected mal-
ware were executed until detection, or mail and peer-to-peer
propagations.

Two samples of malware differing only in their replica-
tions were submitted to antivirus products: the first one used
direct replication API calls (CopyFile), whereas the sec-
ond one used the metamorphic engine replication function-
ality. The interest of such a distinction lies in the difficulty of
determining the self-replication of the metamorphic engine
whereas it is quite simple to identify a direct copy. The detec-
tion results concerning the two submitted samples of malware
are presented in Table 1 with their corresponding observed
detection technique.

According to Table 1, which presents the observed results
obtained from the two submitted worms samples, four classes
of detection techniques can be extracted:

1. behavioral monitoring software represented by AV1 and
AV2;

2. behavioral blocker products represented by AV3 to AV8;
3. heuristic-based detection tools represented by AV9;
4. form-based detection software unable to detect any

obfuscated worm or metamorphic ones (AV10 to AV16);

It is worth mentioning that the backdoor action (listen-
ing on a specific TCP port) is detected in all cases by the
system firewall. The first three detection classes are detailed
hereafter.

Behavioral monitoring results: This class of detectors
includes two software (AV1 and AV2) able to detect all the
obfuscated email-worms but no metamorphic one. This result
tends to illustrate that AV1 and AV2 considered self-copying
as a key component for detection purposes. However, the self-
replication problem is known to be a difficult one [10]. Our
results show that direct replication by calling the
CopyFile function was detected but not the metamor-
phic engine replication process illustrated in Fig. 3. AV1 gave
no more information to help understand the precise detection
technique used. It seems that sensible events (files creations,
file and registry modifications, self-copying, etc.) were corre-
lated to identifying a generic class of malware (here trojans).
AV2 detected all the obfuscated and metamorphic email-
worms during the installation of the backdoor. As illustrated
by the results, if the backdoor is not embedded in the tested
worms, then no metamorphic worms is detected.

Behavioral blocker results: All these software (AV3 to
AV8) required a user decision concerning each detected

suspicious action. AV3 blocked each file containing an exe-
cutable program disguised by harmless file extension. This
happened during mail creation with a probability of 40% set
in the source code. More precisely, in this case, the
email-worm packed itself in a temporary directory with a
.tmp extension before encoding this copy as a mail attach-
ment. Consequently, all of these temporary files were detected
as suspicious by AV3. AV4 to AV6 blocked all the malware
attempts to become resident by registry modifications. AV7
blocked all write accesses to the system directory. Finally,
AV8 monitored several behavior with different level of risks
and gave the following warnings for all the metamorphic
email-worms:

1. modifying your computer so that another computer can
access it;

2. copying an “executable” file to a sensitive area of your
system;

3. registering itself in your “Windows System Startup” list;
4. copying another program to an area of your computer

that shares files with other computers;
5. connecting to the Internet in a suspicious manner to send

out emails.

Here, it is worth mentioning that this product was not able to
detect the self-replication of the metamorphic engine. Indeed
expressions “an executable” in 2 and “another program” in 4
confirmed the self-replication detection difficulty as for AV1
and AV2. Moreover, it was verified that AV8 could detect self-
replication on the obfuscated versions of MyDoom. How-
ever, in all cases a warning was generated for any program
copy as well as a self-copying. Moreover, these different
warnings were not correlated to identify a specific malware
behavior. Behavioral blocking is a proactive detection tech-
nique preventing any malicious action before execution. Each
of these action relies on a single system call. So, τ -obfusca-
tion is useless on this class of detectors.

Heuristic-based detection results: AV9 detected all the
malware according to their binary files and not during their
executions. More precisely, all the malware were detected
under the label “Heur_PE virus” which suggests that heuris-
tics were used for detection purpose. To validate this
heuristics-based detection assumption, we created 3 samples
of malware with different τ values (1,500, and 1 000 000 iter-
ations). Each of these samples was composed of 4 groups of
100 malware with different code block sizes. Figure 6 gives
the corresponding detections rates.

According to these results, the detections rates seem pro-
portional to the code block sizes. Moreover, τ -obfuscation
appears to have no impact on detection. This confirms that
AV9 used heuristics-based detection approach to recognize

123

Black-box approach concerning antivirus products evaluation 285

Table 1 Detection results
obtained on 16 antivirus
products with 100 obfuscated
worms (first column) and 100
metamorphic ones (second
column)

aAll the malware (obfuscated
and metamorphic) were blocked
for suspicious DLL installation.
For this antivirus, the presented
results correspond to worms
without any payload (backdoor)

Software Obfuscated worms Metamorphic worms Observed detection
technique

AV1 100/100 detected as 0/100 behavior monitoring

generic Trojan

AV2 100/100 detected for 0/100a behavior monitoring

suspicious file actions (self copies)a

AV3 40/100 blocked for 40/100 blocked for file blocker

suspicious files actions suspicious files actions

AV4 100/100 blocked for 100/100 blocked for registry blocker

AV5 registry modifications registry modifications

AV6 (residency) (residency)

AV7 100/100 blocked for 100/100 blocked for file blocker

system directory write access system directory write access

AV8 100/100 blocked for 100/100 blocked for actions blocker

suspicious actions suspicious actions

AV9 10/100 detected as 10/100 detected as heuristic

“Heur_PE virus” “Heur_PE virus” form-analysis

AV10 0/100 0/100 no detection

.

.

.
.
.
.

.

.

.
.
.
.

AV16 0/100 0/100 no detection

0,10

0,33

0,48

0,63

0,08

0,29

0,52

0,57

0,08

0,35

0,44

0,64

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

1 to 5 instructions 5 to 10 instructions 10 to 15 instructions 15 to 20 instructions

D
et

ec
ti

o
n

 r
at

es

Code block sizes
1 iteration 500 iterations 1 000 000 iterations

Fig. 6 Detection rates of AV9 according to code block sizes and τ

values

these metamorphic malware. No information was given by
the product on these specific heuristic detection techniques.

4.4 Discussion

Detection results: the previous experiments emphasize the
two main representative behavioral detection techniques used
in current industrial malware detectors: behavioral monitor-
ing and behavioral blocking. AV1 and AV8 produce two

interesting results, each one representing a different class
of detection techniques. Indeed, AV1 is able to correlate
some suspicious actions to identify generic malware
behavior. Unfortunately, complex self-replications such as
metamorphic ones are not detected, leading to a 100% false
negatives results when confronted with our experimental
metamorphic worms. AV8 can detect all elementary sus-
picious actions which could describe the behavior of the
email-worm MyDoom. Unfortunately, these events are not
correlated to identify the generic email-worm behavior. In all
cases, it appears to be too immature to evaluate the impact of
τ -obfuscation on the current state of the art detection prod-
ucts. Finally, the detection of metamorphic malware appears
to be a real challenge for current detection products.

Why metamorphic malware? Syntactic modifications are
required to observe the different detection techniques used
in antivirus products and especially heuristics and behav-
ioral ones. Currently, these form modifications are gener-
ally obtained by packers actions. In this study, we focus
on metamorphism as we believe it could represent a more
worrying threat than packers. Indeed, starting with a worm
binary, some packers can produce several packed variants
of this original worm. However, each variant will keep the
same form during replication. For instance, considering
MyDoom, the CopyFileAPI used for replication purpose

123

286 J.-M. Borello et al.

Table 2 Detection results obtained on the packed version of
MyDoom.A

AV1 Type_Win32

AV2 Sus/UnkPacker

AV3 TR/Crypt.CFI.Gen Trojan

AV4 registry modifications detected

AV5 behaves like Win32.P2P-worm

AV6 temporary files detected as Generic Malware.a!zip

AV7 Type Win32

AV8 many suspicious actions detected (see Sect. 4.3)

AV9 Win32 MyDoom

AV10 ∅
AV11 W32/Malware

AV12 W32/Atak!Generic

AV13 suspicious

AV14 ∅
AV15 ∅
AV16 Win32:trojan-gen

acts by duplicating the image file of the email-worm. So,
a packed form of MyDoom will produce several identical
packed worms. On the contrary, a metamorphic malware
will produce different forms after replication as illustrated
in Sect. 3.3.

To practically evaluate the difference between packers
and metamorphic malware, we have implemented a simple
packer based on the LZ77 [29] algorithm. The original bina-
ries (worm and backdoor) were packed before being submit-
ted to the previous antivirus programs. Detection results are
given in Table 2 which presents better detection results than
with metamorphic email-worms.

Concerning false positive results, our approach consists in
a metamorphic self-replication technique which is not pres-
ent in legitimate programs. In this sense, the issue of false
positive results is out of the scope of this article. However, a
more interesting point is the detection results of benign pro-
grams after application of our metamorphic engine. So, we
have applied our metamorphic engine to benign programs
before submitting them to detection. In all cases, no anti-
virus program appears able to detect the self-replication.
In other words, the obtained metamorphic programs are con-
sidered as “suspicious” as they were before application of
the metamorphic engine.

5 Conclusion and future works

In this paper, we have proposed an approach of a generic
metamorphic engine based on advanced code transforma-
tion techniques. Describing the process of the metamorphic

engine self-replication, we have illustrated the difficulty of
detecting it. From a static point of view, the obfuscation
scheme was designed to avoid any syntactic signature which
could represent a possible detection pattern. Moreover,
classical static analysis techniques based on data flow
propagation or slicing are limited by the robustness of code
obfuscation.

To evaluate the threat represented by self-replicating meta-
morphic malware, we applied our metamorphic engine to a
representative email-worm to assess current industrial antivi-
rus products detection capabilities. According to the obtained
results, we can consider that no tested detection tool is able
to reliably detect this class of malware. Concerning static
detection products, only one seems able to detect samples of
malware according to some heuristics. Concerning behav-
ioral detection tools, two techniques seem to be used: behav-
ioral monitoring and behavioral blocking. Unfortunately, our
experiments found some worrying limitations in these detec-
tion techniques. Indeed, behavioral monitoring fails to iden-
tify the replication process of the proposed metamorphic
engine, leading to false positive results. Behavioral block-
ing, which consists in suspending some suspicious actions,
relies on the user decision to achieve system security and
appears unable to detect a global malicious behavior. Conse-
quently, behavioral detection seems an early detection strat-
egy, for which current implementation is not yet effective
against metamorphism.

These experiments results allows us a black-box clas-
sification of antivirus products based on their observable
detection techniques through their response to metamorphic
malware. This approach presents an original way concerning
the evaluation and the classification of current detection tools
as a supplement of existing evaluation tests.

Finally, this work aimed at focusing on the threats that
metamorphic malware could represent. By considering the
practical case where no user can decide on the malicious
aspect of an action, the question is about the automatic detec-
tion of such metamorphic threats. As underlined in [21], we
believe that alert correlation would offer interesting perspec-
tives in malware detection, as has already been done concern-
ing intrusion detection. From now, our work will be aimed
at dynamically detecting this type of malware.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, Reading (1986)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A.,
Vadhan, S., Yang, K.: On the (Im)possibility of Obfuscating Pro-
grams. Crypto ’01, Lecture Notes in Computer Science, vol. 2139,
pp. 1–18 (2001)

3. Beaucamps, P., Filiol, É.: On the possibility of practically obfus-
cating programs—towards a unifed perspective of code protection.

123

Black-box approach concerning antivirus products evaluation 287

In: Bonfante, G., Marion, J.-Y. (eds.) WTCV’06 Special Issue.
J. Comput. Virol. 2(4) (2006)

4. Bonfante, G., Kaczmarek, M., Marion, J.Y.: Architecture of mor-
phological malware detector. J. Comput. Virol. 5(3), 263–270
(2008)

5. Borello, J.M., Mé, L.: Code obfuscation techniques for metamor-
phic viruses. J. Comput. Virol. 4(3), 211–220 (2008)

6. Bruschi, D., Martignoni, L., Monga, M.: Detecting self-mutating
malware using control-flow graph matching. In: Detection of Intru-
sions and Malware & Vulnerability Assessment. Lecture Notes in
Computer Science, vol. 4064, pp. 129–143. Springer, Berlin (2006)

7. Chomsky, N.: Three models for the description of languages. IRE
Trans. Inform. Theory 2, 113–124 (1956)

8. Chomsky, N.: On certain formal properties of grammars. Inform.
Control 2, 137–167 (1959)

9. Christorodescu, M., Jha, S.: Static analysis of executable to detect
malicious patterns. In: Proceedings of the 12th USENIX Security
Symposium, pp. 169–186 (2003)

10. Cohen, F.: Computer Viruses. PhD thesis, University of Southern
California (1986)

11. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap,
resilient, and stealthy opaque constructs. In: Principles of Program-
ming Languages POPL98, pp. 184–196 (1998)

12. Collberg, C., Thomborson, C., Low, D.: A Taxonomy of Obfus-
cating Transformations. Technical Report 148, University of
Auckland, New Zealand (1997)

13. Driller, T.M.: Metamorphism in Practice. 29A E-zine, vol. 6 (2002)
14. Ferrie, P.: Un combate con el kernado. Virus Bulletin, pp. 8–9

(2002)
15. Ferrie, P., Lee, T.: W32.mydoom.a@ mm. http://www.symantec.

com/security_response/writeup.jsp?docid=2004-012612-5422-
99&tabid=2 (2004)

16. Filiol, É.: Metamorphism, formal grammars and undecidable code
mutation. Int. J. Comput. Sci. 2(1), 70–75 (2007)

17. Jacob, G., Debar, H., Filiol, É.: Behavioral detection of malware:
from a survey towards an established taxonomy. J. Comput. Virol.
4(3), 251–266 (2008)

18. Jacob, G., Debar, H., Filiol, É.: Functional polymorphic engines:
formalisation, implementation and use cases. J. Comput. Virol.
5(3), 247–261 (2008)

19. Kaspersky, E.: Darkparanoid—Who me? Virus Bulletin, pp. 8–9,
January (1998)

20. Lakhotia, A., Kapoor, A., Kumar, E.U.: Are metamorphic viruses
really invincible? Virus Bulletin, pp. 5–7 (2004)

21. Morin, B., Mé, L.: Intrusion detection and virology: an analy-
sis of differences, similarities and complementariness. J. Comput.
Virol. 3, 39–49 (2007)

22. Preda, M.D., Christorodescu, M., Jha, S., Debray, S.: A Semantic-
based approach to malware detection. In: Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL) (2007)

23. Spinellis, D.: Reliable identification of bounded-length viruses is
NP-complete. IEEE Trans. Inform. Theory 49(1), 280–284 (2003)

24. Szor, P.: The Art of Computer Virus Research and Defense.
Addison-Wesley, Reading (2005)

25. Tip, F.: A survey of program slicing techniques. J. Program.
Lang. 3, 121–189 (1995)

26. VX Heavens. http://vx.netlux.org
27. Walenstein, A., Mathur, R., Chouchane, M., Lakhotia, A.: The

design space of metamorphic malware. In: Proceedings of the
2nd International Conference on i-Warfare & Security (ICIW),
pp. 241–248 (2007)

28. Walenstein, A., Mathur, R., Chouchane, M.R., Lakhotia, A.:
Normalizing metamorphic malware using term rewriting. In:
SCAM 2006: The 6th IEEE Workshop Source Code Analysis and
Manipulation, pp. 75–84 (2006)

29. Ziv, J., Lempel, A.: A universal algorithm for sequential data com-
pression. IEEE Trans. Inform. Theory 23(3), 337–343 (1977)

123

http://www.symantec.com/security_response/writeup.jsp?docid=2004-012612-5422-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2004-012612-5422-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2004-012612-5422-99&tabid=2
http://vx.netlux.org

	From the design of a generic metamorphic engine to a black-box classification of antivirus detection techniques
	Abstract
	1 Introduction
	2 Metamorphism and obfuscation
	3 Metamorphic engine description
	3.1 Obfuscation step
	3.2 Modeling step: the necessity of extra information
	3.3 Metamorphic engine replication with no constant kernel
	3.4 Embedding the metamorphic engine in another program

	4 Malware detectors classification
	4.1 Building a metamorphic version of MyDoom
	4.2 Evaluation platform
	4.3 Experiment results
	4.4 Discussion

	5 Conclusion and future works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

