
MetaAware: Identifying Metamorphic Malware∗

Qinghua Zhang, Douglas S. Reeves
Cyber Defense Laboratory, Computer Science Department
North Carolina State University, Raleigh, NC 27695-8207

{qzhang2, reeves}@ncsu.edu

Abstract

Detection of malicious software (malware) by the use of
static signatures is often criticized for being overly simplis-
tic. Available methods of obfuscating code (so-called meta-
morphic malware) will invalidate the use of a fixed signa-
ture, without changing the harmful effects of the software.
This paper presents a new approach for recognizing meta-
morphic malware. The method uses fully automated static
analysis of executables to summarize and compare program
semantics, based primarily on the pattern of library or sys-
tem functions which are called.

The proposed method has been prototyped and evaluated
using randomized benchmark programs, instances of known
malware program variants, and utility software available
in multiple releases. The results demonstrate three impor-
tant capabilities of the proposed method: (a) it does well
at identifying metamorphic variants of common malware;
(b) it distinguishes easily between programs that are not
related; and, (c) it can identify and detect program varia-
tions, or code reuse. Such variations can be due to insertion
of malware (such as viruses) into the executable of a host
program. We argue that this method of metamorphic code
detection will be difficult for malware writers to bypass.

1 Introduction

Personal computers and other devices attached to the In-
ternet must be protected from the enormous amount of ma-
licious software which attempts to infiltrate such systems
via the network. Examples of such malicious software,
termed malware, include viruses, worms, spyware, and tro-
jans. Malware instances have a variety of malicious pur-
poses, effects, and penetration methods [21].

Signature based malware detectors have been popular
and successful. An example of a signature would be a se-

∗This work is supported by the National Science Foundation (NSF)
under grant CNS-0627505.

quence of bytes that is completely characteristic of a spe-
cific malware instance. If a program upon inspection is
found to contain such a byte sequence, it is suspected of be-
ing infected by malware. Deriving signatures of new attacks
is a major function of the virus-checking and intrusion-
detection industries.

However, signature based approaches are essentially
syntactic and lack insight into the programs’ semantics.
Christodorescu and Jha [10] pointed out that such detection
methods can be easily defeated by metamorphism, which
uses code obfuscation techniques to transform the repre-
sentation of programs. Metamorphic malware can obfus-
cate their entire code in a variety of ways, such as con-
trol flow transposition, substitution of equivalent instruc-
tions, variable renaming, etc. [9, 26]. This creates an arms
race between the metamorphic malware writers (or obfus-
cation engines such as Mistfall, Win32/Simile, and RPME
as pointed out in [26]), the signature writers, and the own-
ers/administrators of the threatened computers or devices,
which must be protected.

It is also quite common that new malware variants (or
mutants) rapidly evolve from old malware, to which new
functions have been added, or existing functionalities have
been tweaked [15]. For example, the VX Heavens website
[7] provides access to thousands of malware variants in a
variety of different categories. For each malware variant,
a signature must be identified, packaged, and downloaded
to the base of users expecting protection from the new at-
tack. The huge range of possible variants, and the speed
with which they appear, makes this a less and less prac-
tical approach. Zmist is an advanced metamorphic virus
that demonstrates a set of polymorphic and metamorphic
code writing skills which include entry-point obscuring,
randomly using an additional polymorphic decryptor, code
permutation and code integration [26].

This paper offers a semantic characterization of pro-
grams, and a method of matching such characterizations,
as a basis for malware detection that is resilient to many
commonly-used obfuscation techniques. Generally the
problem of determining whether a program will exhibit

a certain behavior is undecidable. Therefore, this paper
presents an approximation approach to address the problem.

Essentially, this paper proposes a code pattern genera-
tion method which characterizes a code fragment’s seman-
tics, or functionality, based on system calls executed by the
malware. It is based on static analysis of control and data
flow of call traces, which include the calling instruction,
as well as the instructions that prepare parameters for the
system call. This paper also proposes a pattern matching
method, which tells whether two patterns semantically re-
semble each other. Let the characterization of a code frag-
ment be represented as f: code -> pattern, and the
matching function as �M : (pattern1, pattern2) − >
r, where r ∈ [0, 1]. When two code fragments k and l have
similar or identical functionality, it is desired that M(f(k),
f(l)) be as close to 1 as possible; otherwise, it is desired
that M(f(k), f(l)) be close to 0. A weighted match-
ing is used to compute the degree of similarity between two
code fragments, based on their patterns.

The proposed approach differs from a previous research
contribution [12] with similar assumptions and goals. That
work proposes to use semantic templates of certain mali-
cious behavior (such as the decryption loop in polymorphic
malware) to detect malware. The templates are generated
by studying the common behavior of a set of collected mal-
ware instances, and are generated manually. The method in
this paper, in contrast, automatically generates a pattern that
characterize a program’s semantics, and uses this pattern to
detect either obfuscated, or mutated, malware.

The proposed method has been implemented and eval-
uated on actual malware variants, widely-used benchmark
programs that have been randomized, and different releases
of of the GNU binutils programs [5]. The evaluation results
demonstrate the proposed method can make a clear distinc-
tion between semantically equivalent or related programs,
and those that are not. The measured similarity score of an
original benchmark program and its randomized version in
most cases achieves a value of .95 or greater. The measured
similarity scores of different releases of the GNU binutil
programs can achieve .75 or better. The measured similar-
ity scores for different malware variants vary, but there is
a very clear distinction between malware variants and non-
variants. To apply the proposed approach in practice, a rea-
sonable threshold can be set by the user to determine the
sensitivity of malware detection.

The rest of this paper is organized as follows. Section
2 briefly reviews related work. Section 3 explains the pro-
posed method. Section 4 presents the results of evaluating
this method experimentally. Section 5 compares the pro-
posed method with previous approaches, and points out the
limitations of the proposed method. Section 6 concludes the
paper.

2 Related Work

Malware detection has been an important research topic
for quite some time [25, 20]. Some recent work has focused
on the problem of metamorphic and polymorphic malware
that uses code obfuscation techniques to bypass static signa-
ture based approaches. Christodorescu et al. [9] presented a
unique view of malicious code detection as an obfuscation-
deobfuscation game, and used control flow graph compar-
ison to detect some simple obfuscation techniques often
used by virus writers. The same authors [12] later proposed
to use instruction semantics to formalize templates of cer-
tain malicious behavior, such as the occurrence of decryp-
tion loops in polymorphic (self-decrypting) malware. They
then applied a template matching algorithm to detect mal-
ware. PolyUnpack [24] can identify unpack-executing mal-
ware based on a combination of static and dynamic anal-
ysis. This approach is based on the observation that se-
quences of packed or hidden code in a malware instance
can be identified when its execution is checked against its
static code model. Chouchane and Lakhotia [8] proposed
using “engine signatures” to assist in detecting metamor-
phic malware. Basically, this technique evaluates collected
forensic evidence from x86 code segments through a code
scoring function. This score is a measure of how likely it
is that the code has been generated by a known instruction-
substituting metamorphic engine.

There has also been substantial work on the detection
of obfuscated malicious code in network traffic. Zhang et
al. [30] proposed a novel approach that can detect in net-
work packets highly obfuscated polymorphic exploit code,
based on static program analysis, and emulated instruction
execution. This work is limited to the detection of malware
that uses polymorphism, or self-decryption. Newsome et
al. [23] proposed a signature generation system, which gen-
erates signatures that consist of multiple disjoint content
substrings to match polymorphic or metamorphic worms.
This approach is based on the assumption that there are in-
variant substrings that are present in all variants of a worm
payload, and thus form a signature. Support for this as-
sumption comes from exploits which contain common sub-
strings that are crucial to successfully exploiting vulnera-
ble servers. This approach needs to collect enough training
flows to confidently produce valid, invariant signatures.

Kruegel et al. [18] proposed the use of structural anal-
ysis and comparison of binary code, based on its control
flow. They used graph theory (coloring, isomorphism) to
improve the results of their comparison. The difficulties
of disassembling obfuscated code located at arbitrary loca-
tions inside network traffic are not fully addressed, however,
and the method is computationally expensive. We also have
found that metamorphism and obfuscation change the con-
trol flow in such a way that a straightforward comparison

on structural characteristics is likely to fail.
Other recent work [17, 11] has analyzed unique malware

execution behavior to deal with the problems of polymor-
phism and metamorphism.

We now present a new method of detecting obfuscated
variants, or mutants, of malware. Following the description,
the method is evaluated experimentally, and compared with
some of these recent approaches.

3 The New Method

In this section we present a new method of static analy-
sis of executables. This method disassembles two executa-
bles, and then computes the degree of similarity between
them. The essential characteristics used for this compari-
son are the system or library function calls made by the two
programs. The method is intended to be used for recog-
nition (and subsequent isolation) of metamorphic malware
and malware variants.

3.1 Overview

Static program analysis is used for many purposes, such
as security vulnerabilities checking [28, 14], and program
behavior modeling for intrusion detection [25, 27]. Static
program analysis needs to be done only once, and does not
require run-time monitoring of program execution, which
has substantial overhead. Proving that two programs (for
instance, an instance of a virus and a suspected metamor-
phic variant) are functionally equivalent is an undecidable
problem, unfortunately. The goal for static analysis of this
paper is thus less than a full proof of functional equivalence.

Instead, we propose to to characterize a program in a way
that can combine both structure and function. This charac-
terization is referred to as the pattern of a code fragment.
Ideally, the pattern should be markedly different for distinct
malware, and the obfuscation used by metamorphic engines
would not drastically change the pattern derived by static
analysis. The challenge is to compute such patterns quickly,
and to find a way to compare patterns that yields insight into
the similarity between program functions. These patterns
then can be used in a way that is similar to the way that sig-
natures are used by conventional virus checkers. The use of
patterns must be substantially more resistant to obfuscation
than the use of fixed signatures, however.

When two programs are analyzed to produce patterns
representing their function, these patterns can be compared
to determine how similar the programs are. The process of
comparing patterns is termed pattern matching in this paper.
The output of pattern matching is a similarity score between
0 and 1, where a value of 0 is interpreted to mean the pro-
gram functions are very different, and a value of 1 is inter-
preted to mean the program functions are extremely close or

identical. To make a decision whether an unknown program
is similar enough to a known malware to require that it be
quarantined, this score must be greater than a user-defined
threshold.

We propose that patterns are based primarily on the sys-
tem calls or library executed by the malware. We propose
to statically analyze the control and data flow of call traces,
which are the instructions that prepare the parameters used
by a system call, plus the corresponding call instruction.
System call based modeling has been frequently used to
characterize a program’s behavior for intrusion detection
purpose [25, 27]. It is a reasonable assumption that a com-
promised application cannot cause much harm unless it in-
teracts with the underlying operating system [27].

As an illustration of this behavior, the Sapphire worm ex-
ecutes the following set of system calls [3]: LoadLibrary,
GetProcAddress, GetTickCount, socket, sendto.
Malware which did not make use of such system functions
would likely be harder to write, and result in a much larger
code size. The use of existing code obfuscation techniques
or metamorphic program transformations does not in gen-
eral remove such system calls from the malware.

The proposed pattern generation and matching methods
are now described in detail.

3.2 Pattern Generation Based on Static
Analysis

As mentioned above, system calls and library function
calls are proposed to be used as the basis for generating a
pattern that characterizes a target malware. Control flow
and data flow analysis are used for this purpose.

To generate a pattern for code fragment p, p is disassem-
bled first. There are a number of methods and tools de-
signed to disassemble obfuscated binary code. The method
of Kruegel et al [19] was adapted for this purpose.

Once the code is disassembled, the control flow is eas-
ily obtained through static analysis. The result of such an
analysis is a set of basic blocks, and the transfers of control
between those blocks. The call instructions that branch to
system or library functions are then identified. Let Ii de-
note such a library call instruction in block i, and let the
total number of library call instructions in the program be
denoted as N .

The next task is to identify instructions that affect the pa-
rameters (values in memory or registers) used by the system
functions when they are called by the program. While there
can be many such parameters, the only such parameter used
at present by the proposed method is the target address of
the call instruction. Finding the instructions that affect
the target address can be accomplished by data flow analy-
sis.

The data flow analysis is initially given a single block i,

and includes the system call or library function call Ii con-
tained in that block. In block i, the instructions affecting
the parameters of Ii are determined. Essentially, they refer
to the instructions with definitions reaching 1 this call. For
each of these instructions, the blocks affecting their input
operands are determined by data flow analysis. This pro-
cess of backwards data flow analysis continues until either
(a) the target block i is again reached (in which case a cycle
has been discovered), or (b) there are no more instructions
remaining for which backwards data flow analysis must be
performed. The dependency or data flow relationship be-
tween instructions can then be represented as a graph, with
a vertex for each instruction in the program, a directed edge
from u to v if the instruction corresponding to vertex u af-
fects the operand(s) of the instruction corresponding to ver-
tex v, and the vertex representing Ii as the sink of the graph.
A maximal instruction trace B in this graph is a path from
a vertex having no predecessor in the graph, to the vertex
representing Ii. The above process is performed for each
system or library function call encountered in the disassem-
bled code.

Following this data flow analysis, the instructions of each
maximal instruction trace are processed to generate a sub-
pattern for the trace. For this purpose, each instruction is
first converted into an intermediate representation, based on
the semantics of the instruction. This intermediate represen-
tation is convenient for processing, and allows functionally
equivalent instructions to be represented in the same way.
It also allows the method to be applied regardless of the in-
struction set architecture, although at present only the Intel
x86 architecture [6] is targeted, due to its popularity.

The intermediate representation consists of the opera-
tion type, the operands, and the operand addressing modes
(i.e. immediate data, register, or memory addressing). The
operation types for the x86 architecture are classified into
seven major categories (e.g., data transfer, arithmetic, logi-
cal, control transfer) and within each category multiple sub-
categories may be defined. For instance, the loop and
jcc instructions both transfer control and therefore are as-
signed to the same operation type. Operands are classified
as being of type source (read only) or destination (write
only or read/write), and the addressing mode and associ-
ated register, if any, are recorded. The conversion to in-
termediate form allows many instructions that are function-
ally equivalent to be identified to a limited degree. For in-
stance, using intermediate representations, the instructions
sub ecx, ecx and xor ecx, ecx are identified as
functionally equivalent to mov ecx, 0, and the instruc-
tion push eax is identified as being equivalent to dec
esp, 4 followed by mov [esp], eax.

After conversion to the intermediate representation, the

1Please refer to a textbook on compiler theory [22] for the explanation
of reaching definition in data flow analysis.

instructions in each maximal trace are symbolically exe-
cuted in a very limited way. Currently, this symbolic execu-
tion is simply the propagation of constant values. Suppose
the first (earliest) instruction in a trace assigns a constant
value c to a register or memory location, and this constant
value can be propagated to the target system call Ii as the
address to which flow of control will occur. This call
instruction and the (constant) target address then form an
element of a subpattern for a single maximal trace ending at
Ii. Note that this symbolic execution is not sophisticated
enough to recognize all target addresses unambiguously.
For instance, some addresses may be computed from infor-
mation that is not available until runtime. Therefore, when
an instruction cannot be symbolically executed, the propa-
gated constants are bound to it and recorded. All such in-
structions in their intermediate representation are recorded
in order and form an element of the subpattern for a single
maximal trace ending at Ii. An executable instruction in a
maximal trace is not included in the element.

The subpattern for Ii, denoted Ui, is the set of all such
elements for all maximal traces ending at Ii. The set of all
such subpatterns Ui for all the system or function calls in
code fragment p is called the pattern of p, and is denoted as
P p. The intuition behind this definition of a program pat-
tern is that a malware program will normally make use of
some well-defined system services, whose addresses must
be found (so that they can be accessed) in a well defined
way. Attempts to obfuscate the program function, without
changing the set of system or library function calls, can still
leave this behavior visible to inspection. Even obfuscation
of the target of a system call may leave the true target ex-
posed as one possibility. Since the proposed method uses
all possible traces, this true target will remain part of the
pattern of the code fragment. The use of both symbolic ex-
ecution and control flow analysis for disassembly will also
overcome many known methods of obfuscation, as will be
shown in section 4.

Figure 1 shows an example of the the patterns gener-
ated for code fragments of the Sapphire worm, and for a
metamorphic variant of this worm. For purposes of illus-
tration, each sub-pattern is presented in Intel x86 assem-
bly language form, and is a result of data flow analysis and
symbolic execution. For instance, subpattern 1 of pattern
PA results from symbolic execution of the instruction trace
mov esi, [0x42AE1018] || call [esi], in which
the second instruction operand depends on the first instruc-
tion. Subpattern 3 of pattern PA has two elements, which
result from two traces whose target is the same library func-
tion call. In this example, there happens to be multiple sub-
patterns which are identical. This is because some of the
library functions are called in multiple places, with differ-
ent parameters.

The next section explains a method of pattern matching

Pattern(PA)
Sub-Patterns

1 call [0x42AE1018]

2 call [0x42AE1018]

call [0x42AE101C] call [0x42AE1010]

mov ebx, [0x42AE1010]
mov eax, [ebx]
call eax

call [0x42AE101C] call [0x42AE1010]

mov ebp, esp
mov eax, [ebp-40]
call eax

call [0x42AE101C] call [0x42AE1010]

mov ebp, esp
mov eax, [ebp-40]
call eax

3

4

5

6

7

8

Pattern(PB)
Sub-Patterns

1

call [0x42AE1018]

2

call [0x42AE1018]

call [0x42AE101C] call [0x42AE1010]

mov ebx, [0x42AE1010]
mov eax, [ebx]
call eax

call [0x42AE101C] call [0x42AE1010]

mov ebp, esp
mov eax, [ebp-40]
call eax

call [0x42AE101C] call [0x42AE1010]

mov ebp, esp
mov eax, [ebp-40]
call eax

3

4

5

6

7

8

Figure 1. The patterns of code fragments of Sapphire
worm and its metamorphic version.

to compute the similarity between two binaries. The input
to this process is the patterns derived from the binaries in
the way just described. The pattern matching algorithm is
intended to overcome the differences between two variants
of the same malware.

3.3 Pattern Matching

The purpose of pattern matching is to determine if two
code fragments are similar enough to exhibit functional
equivalency. The proposed method does not produce a for-
mal proof of equivalence. Not only is that undecidable, but
malware variants may in fact compute somewhat different
results. Rather, we consider similarity in system or function
call behavior to be strong evidence that programs have a
similar purpose. The two requirements for defining patterns
and the resulting pattern matching algorithm are:

1. The pattern derived from one malware program should
be very different from patterns derived from other pro-
grams, whether benign, or malware of another type.

2. Patterns derived from metamorphic variants of a single
malware program should be very similar.

The matching algorithm is defined as follows. Two code
fragments k and l are given, where k may be, for instance,
a known instance of malware. The pattern for k has been
computed and is represented as P k = {Uk

1 , ..., Uk
Nk

}. The
pattern for l has been computed and is represented as P l =
{U l

1, ..., U l
Nl
}.

Let similarity scores be real values between 0 (minimum
similarity) and 1 (maximum similarity). Suppose similarity
scores between all pairs of subpatterns, where one subpat-
tern is taken from P k and one subpattern is taken from P l,
have been computed.

A pattern matching of k and l is a one-to-one assign-
ment from the set of subpatterns of k to the set of subpat-
terns of l. A maximum matching is one that includes all
of the subpatterns of k, and/or all of the subpatterns of l.
A maximum weighted matching is one that maximizes the
sum of the similarity scores of the pairs of subpatterns that
are matched. The value or score produced by a maximum
weighted matching W is equal to the mean of the similarity
scores of pairs of subpatterns that are present in that match-
ing:

M(P k, P l) =

∑

〈Uk
i ,U l

j〉∈W

score(Uk
i , U l

j)

max(Nk, Nl)
(1)

A maximum weighted matching is an optimistic ap-
proach to computing the similarity between two code frag-
ments. The process of deriving and matching patterns
should not be greatly affected by small errors in disassem-
bly and data flow analysis, or by current program obfusca-
tion techniques. These claims are evaluated in section 4.

Pattern matching is performed after similarity scores are
computed for all pairs of sub-patterns. For each such pair
of sub-patterns, the similarity score of all pairs of elements
is computed, where one element is taken from the first sub-
pattern, and the other element is taken from the second sub-
pattern. From this, a maximum weighted matching of the
elements of the two sub-patterns is computed, in the same
way as mentioned before. The similarity score of this pair
of sub-patterns is then the mean of the similarity scores of
pairs of elements that are matched.

Finally, computing the similarity of two elements in-
volves comparison of the instructions or instruction se-
quences (still in their intermediate form) in the two ele-
ments. This step finds a maximum weighted mapping be-
tween the instructions in the two elements. To do this, it is
required to compute the similarity between any two instruc-
tions, using as input their intermediate forms. The compu-
tation is only an estimate of the similarity between instruc-
tions. Therefore, a heuristic method is used. This method
first computes the similarity between operation types. As
an example, add and subtract operations are deemed
to be similar, while add and call are not. The compar-
ison of operands checks for each operand pair whether the
addressing mode, and register or memory addresses or im-
mediate operands (when they can be determined) are the
same, and scores them based on closeness. Closeness of
operands is weighted more heavily than closeness of oper-
ation types when computing a final similarity score for two
instructions. This computation is designed to be accurate
enough to capture most obfuscations used in practice.

Figure 2 shows an example of the maximum weighted
matching process for the two patterns shown in Figure 1.

0.1 0.2 1 0.2 0.1 0.2 0.1 1
0.1 0.2 1 0.2 0.1 0.2 0.1 1

0.05 1 0.2 1 0.05 1 0.05 0.2
0.73 0.05 0.1 0.05 0.73 0.05 1 0.1
0.05 1 0.2 1 0.05 1 0.05 0.2

1 0.05 0.1 0.05 1 0.05 0.73 0.1
0.05 1 0.2 1 0.05 1 0.05 0.2

1 0.05 0.1 0.05 1 0.05 0.73 0.1

PA

PB

Figure 2. The maximum weighted pattern matching of
code fragments of the Sapphire Worm and a metamorphic
variant, whose patterns are shown in Figure 1. Each Cell is
a similarity score of two subpatterns, one from pattern PA,
and one from pattern PB. The marked cells show the max-
imum weighted matching. The score of pattern matching
M (PA, PB)=8/8=1.

A software prototype of the proposed method has been
implemented, based on the ideas described above. The Hun-
garian algorithm [29] is a well known method for solving
weighted matching problems and was used in the imple-
mentation. The complexity of this algorithm is approx-
imately O(max2(Nk,Nl)). Although the Hungarian algo-
rithm has a polynomial running time, this could still be un-
desirably slow. For instance, a large program whose code
size is measured in MB can easily produce thousands of
subpatterns. Therefore, when the number of subpatterns
exceeds a threshold, an approximate version of maximum
weighted maching is used. In the next section, the prelimi-
nary results from testing of this software are described.

4 Evaluation

The proposed method computes the similarity between
two binary executables, based on the characteristics de-
scribed above. If one executable is derived from another
(i.e., is a variant or version of another), the computed sim-
ilarity should be very high. Otherwise, the computed sim-
ilarity should be low, with a large gap allowing these two
cases to be easily distinguished.

The proposed method has been fully implemented. This
implementation can analyze executables for both the Linux
and Windows operating systems, compiled for the Intel x86
instruction set architecture.

Three sets of inputs were used to test this hypothesis ex-
perimentally. The first set of inputs consisted of benchmark
programs (compiled for Linux) that were processed using
a tool for fine-grained randomization of commodity soft-
ware [16]. The second set of inputs consisted of variants of
known Windows viruses, downloaded from the VX Heav-
ens [7] website. The third set of inputs consisted of var-
ious releases of the GNU binutils programs, compiled for
the Linux platform. For each set, the similarities of known
variants or versions were computed, and when it made sense
to do so, the similarities of unrelated programs (neither de-

Matching Code
Score Size (K) Disass. Pattern Gen. Matching

SPEC twolf 98.48% 164.70 9.24 4.44 0.34
CPU2000 mcf 97.81% 7.86 0.015 0 0.01

gcc 99.39% 1158.36 415.6 210.41 56.52
bzip2 99.23% 29.18 0.09 0.05 0.01
vortex 99.77% 399.82 44.75 23.17 4.05
crafty 99.90% 173.75 7.85 3.57 5.28

perlbmk 95.74% 483.12 123.8 66.31 2.6
parser 99.07% 104.29 5.29 2.71 0.22

gzip 76.87% 31.43 0.11 0.06 0.01
vpr 79.94% 100.54 1.79 0.98 0.26

Apache httpd 99.22% 300.69 42.46 20.48 323.06
Misc ghttpd 99.42% 7.60 0.02 0.01 0

Running Time(s)

Figure 3. Pattern matching between randomized and
original programs. Programs are from SPEC CPU2000
benchmark, the Apache web server httpd, and the GazTek
web server ghttpd. Code size refers only to the code seg-
ment size, not the size of the entire executable program.

rived from the other) were computed as well. The experi-
ments and the results are described in more detail below.

We were not able to use any existing tools designed to
produce an obfuscated version of an arbitrary executable
program that contain all common obfuscation techniques.
Previous work [12] manually generated the obfuscated test
cases with simple obfuscation techniques. The work [10]
generated obfuscated test cases on programs written in vi-
sual basic language to test the resilience of commercial anti-
virus software to metamorphic malware.

4.1 Randomized Executables

To test resilience to obfuscation, a set of programs was
randomized using the ASLP tool [16]. This tool uses bi-
nary rewriting to rearrange the static code and data seg-
ments of an executable file in a random way. It performs
fine-grained permutation of the procedure bodies in a code
segment, and of data structures in the data segment. This
randomization technique can invalidate the use of static sig-
natures for recognition of malicious code. This experiment
was performed on a machine running Fedora Core 1, with a
Pentium 4 CPU of 2.26GHz, and 512M of RAM.

ASLP was applied to programs taken from two well-
known benchmark suites: the SPEC CPU2000 programs [1]
and two web server programs (the Apache web server httpd
[2] and and the GazTek web server ghttpd [4]). The similar-
ity between the randomized and original versions of each
program was then computed using the proposed method.
The results are shown in figure 3.

Of these 12 test cases, 10 have similarity scores above
95%. This demonstrates that program changes due to ran-
domization do not affect the ability of the proposed method
to recognize the similarity in function between normal and
randomized versions. The proposed method of analysis, us-
ing system calls as a point of reference, is robust to such
changes in program structure.

Therefore, similarity scores for the two programs’ ran-
domized and normal versions are still high enough to con-
clude that they are the same program.

4.2 Variant Detection Evaluation

Virus and malware writers have manually created many
variations of common exploits, in an attempt to evade virus-
checking tools. Hundreds of such examples can be found at
popular hacking web sites. Such examples make use of a
wide range of obfuscation techniques.

One such website is VX Heavens [7], which identifies
programs that are variants of the same malware. More than
200 pairs of malware mutants were downloaded from this
website. These program instances were selected from mul-
tiple malware categories. Among these instances, 36.6%
were worms, 18.3% were viruses, 20.8% were backdoor
programs, and 16.3% were trojan programs. The remain-
der of the programs included flooders and exploits. The
tested malware programs had sizes ranging from 8K to 1M
bytes. These malware programs and their mutants employ
multiple commonly used obfuscation techniques. For in-
stance, the simplest obfuscation technique used is register
renaming. A more complicated obfuscation technique is
using functionally equivalent instruction substitution. The
code addresses of the mutants can be very different. The
relative offset in corresponding function call instructions
are frequently adjusted. Sometimes, even within a single
program, the same library functions may be imported mul-
tiple times at different addresses, although at runtime, these
may be reloaded to the same address. Recognizing that two
call instructions refer to the same target address requires
data flow analysis techniques. A much more common case
is that new functions or behaviors are added or revised in
mutants. There is another obfuscation that is not consid-
ered here but is often encountered when downloading the
malware programs. A none trivial number of malware pro-
grams use encryption. The limitation of the proposed ap-
proach will be discussed in the next section.

In the first test, similarity scores were computed for pairs
of executables that represented the same attack. A his-
togram of the resulting similarity scores is shown in Fig-
ure 4. The great majority of pairs are easily recognized as
variants of the same function. For example, over 90% of the
pairs have a similarity score of .7 or greater. These mutants
represent the state of the art in mutation and obfuscation of
malware, and thus are a worthwhile test case for any pro-
gram attempting to recognize metamorphic variants in an
automated way. The results indicate that comparison with
a previous version of malware will, with high probability,
identify a new version of the malware.

It is also important to measure the similarities computed
between programs which are not variants of the same mal-

ware. In the second test, the malware programs were ran-
domly paired with each other, excluding all instances that
were identified on VX Heavens as being variants of the
same malware. Similarities for the resulting 200 pairs were
then computed using the proposed method. Figure 5 shows
the results. The computed similarities are very low, with
over 90% having a similarity score of .1 or less. Approxi-
mately 1% have a similarity score of .7 or greater. It may
be that malware even in different families are derived from
a common code base, explaining these results. Further in-
vestigation is required.

For these programs, a similarity score of .7 would be
an optimal threshold for concluding whether two programs,
one of which is known to be malicious, are functionally
equivalent. While this threshold does not perfectly distin-
guish malware variants from non-variants, keep in mind that
this is a tough test case: identifying hand-crafted metamor-
phic malware, and distinguishing it from other malware,
rather than distinguishing it from non-malicious code.

4.3 Version Difference Evaluation

The third experiment tested how well the proposed
method recognized variations between different versions or
releases of a program. Such versions are not intentionally
obfuscated, but represent another case of software that is
derived from a previous version of a program. They are
therefore a useful test of the proposed method.

Releases 2.10 through 2.17 of the GNU project “binu-
tils” binary tools [5] were used for this purpose. These tools
are used for compiling, linking, and debugging programs.
They make use of several common libraries for low level,
shared functions. Different releases will represent varying
degrees of modification to the original program code.

Figure 6 shows the result of computing the similarity be-
tween consecutive releases of each program, using the pro-
posed method. For the great majority of cases, the com-
puted simularity was greater than .7. The cases where this
was not true are instructive to examine (see Figure 7. Be-
tween release 2.10 and 2.11, code sizes of the utilities in-
creased by approximately 50%, indicating a major revision,
and the computed similarity scores were correspondingly
lower (around .5). Figures 8 and 9 compare both release
2.10 and release 2.11 to release 2.17. It is clear that release
2.11 is much closer (in size and similarity) to 2.17 than re-
lease 2.10 is to 2.17. Also, between release 2.13 and 2.14,
the size of c++filt grew 10-fold, indicating essentially a
replacement by a new program; the computed similarity in
this case was close to 0.

These results indicate that the proposed method is effec-
tive at computing the degree of similarity between programs
in a way that is meaningful, and that is not sensitive to mod-
ifications that preserve a program’s function.

Matching of Malware Mutants

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0- 0.1- 0.15- 0.2- 0.25- 0.3- 0.35- 0.4- 0.45- 0.5- 0.55- 0.6- 0.65- 0.7- 0.75- 0.8- 0.85- 0.9- 0.95-

Matching Score Range

F
re

qu
en

cy

Figure 4. Malware Variants Pattern Matching. Each x-axis
value stands for a range of matching scores

Matching of Malware of different kinds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0- 0.1- 0.15- 0.2- 0.25- 0.3- 0.35- 0.4- 0.45- 0.5- 0.55- 0.6- 0.65- 0.7- 0.75- 0.8- 0.85- 0.9- 0.95-

Matching Score Range

F
re

qu
en

cy

Figure 5. Malware Variants Pattern Matching. Each x-axis
value stands for a range of matching scores

5 Discussion

5.1 Comparison with Previous Work

This section compares with three previous methods [9,
12, 8] which statically analyze program semantics to detect
metamorphic malware.

As pointed out in [12], the control flow graph compar-
ison method of [9] can only handle very simple program
obfuscations. For example, the detection algorithm only
allows noop instructions to appear between matching in-
structions. By comparison, the method proposed in this pa-
per can handle a much wider range of obfuscations than this.
It can also detect program mutants that have similar but not
identical behaviors.

The method of [12] uses semantic templates to detect
malware that has certain common behaviors. A template
is manually generated by studying the common behavior
of a set of collected malware instances; how to generate a
general semantic template is not addressed. Our method, by
contrast, proposes an automatic pattern generation method
that characterizes a program’s semantics. Furthermore, we
argue that the proposed method is harder to be bypassed.
The proposed method uses maximum weighted matching
to be tolerant to inaccurate program disassembly and static
analysis.

Chouchane and Lakhotia [8] use “engine signatures”
to assist in detecting metamorphic malware. That work,
however, can only deal with known instruction-substituting
metamorphic engines. There are many ways to create meta-
morphic engines, by no means limited to instruction substi-
tution. Moreover, their technique can be defeated by shrink-
ing substitution methods. Our proposed method does not
rely on specific engines. It characterizes and compares a
program’s semantics more generally. It uses control flow
and data flow analysis, and is more robust against complex
metamorphism.

5.2 Limitations

There are two main limitations that can cause the failure
of the proposed method. The major limitation is due to the
use of static analysis. Since static analysis does not execute
the program, run-time information is not available to derive
a more accurate pattern. A case in point is static disassem-
bly, which is not guaranteed to be 100% accurate [19]. Var-
ious techniques, such as indirect addressing, self-modifying
code, and dynamic code loading can lower the accuracy of
static disassembly. A number of malware instances down-
loaded from VX Heavens could not be disassembled prop-
erly, even though they were executable. One such technique
used by such malware is manipulation of the section table
in the program header. Examples include manipulating the
program entry pointer to start in a non-code section, and
changing the size of the code section to a false value. Such
techniques can cause disassembly to conclude incorrectly
that the file is not executable. Polymorphic malware is a
special case of self-modifying code for obfuscation. The
solution to this problem would be to combine dynamic anal-
ysis with static analysis to improve the disassembly accu-
racy. Many techniques to improve disassembly accuracy
have also been proposed [13], but are not currently imple-
mented in our prototype.

The second major limitation results from code evolution.
Similarity of a mutant to an original code version largely
depend on how the new instance evolves. If the majority
of functionalities (i.e. the malware payload) of a mutant
is replaced, only a small part will be matched, resulting
in a low similarity score. In addition, the malware writer
can purposely insert random “junk” functionalities in terms
of actual system calls made to lower the matching score.
Theocratically, if the number of “junk” functionalities goes
unbounded or infinite, the proposed method will likely fail.
To address this issue, it may be necessary for the program
pattern to be focused on specific functions of the malware,
rather than on the entire program’s function. For instance,
a whitelist of system calls or library calls can be built to fil-

Version Difference

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

2.10,2.11 2.11,2.12 2.12,2.13 2.13,2.14 2.14,2.15 2.15,2.16 2.16,2.17

version numbers in comparison

m
at

ch
in

g
sc

or
e

c++filt strings size add2line nm ranlib ar

Version Difference

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

2.10,2.11 2.11,2.12 2.12,2.13 2.13,2.14 2.14,2.15 2.15,2.16 2.16,2.17

version numbers in comparison

m
at

ch
in

g
sc

or
e

ld readelf objdump as strip objcopy gprof

Figure 6. Pattern Matching of GNU Binutils programs. Each
pattern matching is performed between two consecutive ver-
sions of a GNU Binutils program.

Size Difference

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

2.10,2.11 2.11,2.12 2.12,2.13 2.13,2.14 2.14,2.15 2.15,2.16 2.16,2.17

version numbers in comparison

si
ze

 d
iff

er
en

ce

c++filt strings size add2line nm ranlib ar

Size Difference

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

2.10,2.11 2.11,2.12 2.12,2.13 2.13,2.14 2.14,2.15 2.15,2.16 2.16,2.17

version numbers in comparison

si
ze

 d
iff

er
en

ce

ld readelf objdump as strip objcopy gprof

Figure 7. Size comparison of GNU Binutils programs. Each
size comparison is performed between two consecutive ver-
sions of a GNU Binutils program.

ter out common functionalities that are usually unimportant
such as printf.

6 Conclusion

This paper presented a new approach to characterize
and compare program semantics. A direct application of
the proposed method is to recognize metamorphic mal-
ware programs, which conventional signature-based detec-
tion methods are less successful at detecting. The proposed
method has been prototyped and evaluated using random-
ized benchmark programs, various types of real malware
programs, and multiple releases of the GNU binutils pro-
grams. The evaluation results demonstrate three impor-
tant capabilities of the proposed method: (a) it has great
promises in identifying metamorphic variants of common
malware; (b) it distinguishes easily between programs that
are not related; and, (c) it can identify and detect program
variations, or code reuse. Such variations can be due to in-
sertion of malware (such as viruses) into the executable of
a host program, or programs revision. Thus an indirect ap-
plication of the proposed work is to help localize an occur-
rence of one fragment of code inside another program using
the maximum matching.

Future work will consider more accurate analysis of the
parameters passed to library or system functions. We also
believe the method’s ability to identify similarities between

binary executables will be useful for code attribution and
other reverse engineering purposes.

Acknowledgements. The authors would like to thank
Chongkyung Kil for randomizing the benchmarks using the
ASLP tool, and providing them with the results.

References

[1] SPEC CPU2000. http://www.spec.org/cpu/.

[2] Apache Web Server. http://httpd.apache.org/.

[3] eEye Digital Security company. http://www.eeye.com.

[4] GazTek Web Server. http://gaztek.sourceforge.net/ghttpd/.

[5] GNU Binutils. http://www.gnu.org/software/binutils/.

[6] Intel Architecture Software Developers Manual. Volume 2:
Instruction Set Reference.

[7] VX heavens. http://vx.netlux.org.

[8] M. R. Chouchane and A. Lakhotia. Using Engine Signature
to Detect Metamorphic Malware. In Proceedings of the 4th

ACM Workshop on Rapid Malcode, November 2006.

[9] M. Christodorescu and S. Jha. Static Analysis of Executa-
bles to Detect Malicious Patterns. In Proceedings of the
12th USENIX Security Symposium, pages 169–186, Auguest
2003.

[10] M. Christodorescu and S. Jha. Testing malware detectors. In
ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT inter-
national symposium on Software testing and analysis, pages
34–44, 2004.

Version Difference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2.10, 2.17 2.11, 2.17
version numbers in comparison

m
at

ch
in

g
sc

or
e

c++filt strings size addr2line nm ranlib ar

ld readelf objdump as strip objcopy gprof

Figure 8. Pattern Matching of GNU Binutils programs. Each
pattern matching is performed between version 2.10 and 2.17,
or version 2.11 and 2.17 of a GNU Binutils program.

Size Difference

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

2.10, 2.17 2.11, 2.17
version numbers in comparison

si
ze

 d
if

fe
re

nc
e

c++filt strings size addr2line nm ranlib ar
ld readelf objdump as strip objcopy gprof

Figure 9. Size comparison of GNU Binutils programs. Each
size comparison is performed between version 2.10 and 2.17,
or version 2.11 and 2.17 of of a GNU Binutils program.

[11] M. Christodorescu, S. Jha, and C. Kruegel. Mining Speci-
fications of Malicious Behavior. In Proceedings of the 6th

ESEC/FSE, September 2007.

[12] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E.
Bryant. Semantics-Aware Malware Detection. In Pro-
ceedings of 2005 IEEE Symposium on Security and Privacy
(S&P’05), pages 32–46, May 2005.

[13] C. Cifuentes, M. Van Emmerik, D. Simon D.Ung, and
T. Waddington. Preliminary Experiences with the Use of the
UQBT Binary Translation Framework. In Proceedings of
the Workshop on Binary Translation, pages 12–22, October
1999.

[14] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek.
Buffer Overrun Detection using Linear Programming and
Static Analysis. In Proceedings of the 10th ACM Con-
ference on Computer and Communications Security(CCS),
pages 345–354, October 2003.

[15] J. Gordon. Lessons from Virus Developers: The Beagle
Worm History Through April 24, 2004. May 2004.

[16] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address
Space Layout Permutation (ASLP): Towards Fine-Grained
Randomization of Commodity Software. In Proceedings of
the 22th Annual Computer Security Applications Conference
(ACSAC’06), December 2006.

[17] E. Kirda and C. Kruegel. Behavior-based Spyware Detec-
tion. In Proceedings of the 15th USENIX Security Sympo-
sium, pages 273–288, Auguest 2006.

[18] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vi-
gna. Polymorphic Worm Detection Using Structural Infor-
mation of Executables. In Proceedings of the 8th Interna-
tional Symposium on Recent Advances in Intrusion Detection
(RAID05), pages 53–64, September 2005.

[19] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static
Disassembly of Obfuscated Binaries. In Proceedings of the
13th USENIX Security Symposium, pages 255–270, Auguest
2004.

[20] W. Lee and S. Stolfo. Data Mining Approaches for Intru-
sion Detection. In Proceedings of the 7th USENIX Security
Symposium, 1998.

[21] G. McGraw and G. Morrisett. Attacking Malicious Code:
A Report to the Infosec Research Council. IEEE Software,
17(5):33–41, Sept./Oct. 2000.

[22] S. S. Muchnick. Advanced Comiler Design Implementation.
Morgan Kaufmann Publisher, CA, USA, 1997.

[23] J. Newsome, B. Karp, and D. Song. Polygraph: Automati-
cally Generating Signatures for Polymorphic Worms. In Pro-
ceedings of 2005 IEEE Symposium on Security and Privacy
(S&P’05), pages 226–241, May 2005.

[24] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee.
PolyUnpack: Automating the Hidden-Code Extraction of
Unpack-Executing Malware. In Proceedings of the 22th

Annual Computer Security Applications Conference (AC-
SAC’06), December 2006.

[25] A. Somayaji S. Forrest, S. Hofmeyr and T. Longstaff. A
Sense of Self for Unix Processes. In Proceedings of 1996
IEEE Symposium on Security and Privacy, pages 120–128,
May 1996.

[26] P. Szor. The Art of Computer: Virus Research and Defense.
Symantec Press, NJ, USA, first edition, 2005.

[27] D. Wagner and D. Dean. Intrusion detection via static anal-
ysis. In Proceedings of 2001 IEEE Symposium on Security
and Privacy, pages 156–169, May 2001.

[28] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun vulnera-
bilities. In Proceedings of the 7th Network and Distributed
System Security (NDSS’00) Symposium, February 2000.

[29] D. B. West. Introduction to Graph Theory. Prentice-Hall,
NJ, USA, second edition, 2001.

[30] Q. Zhang, D. S. Reeves, P. Ning, and P. Iyer. Analyzing
Network Traffic To Detect Self-Decrypting Exploit Code. In
Proceedings of 2007 ACM Symposium on InformAtion, Com-
puter and Communications Security (ASIACCS’07), March
2007.

