SPARSE: A Hybrid System to Detect Malcode-Bearing Bcuments

Wei-Jen Li and Salvatore J. Stolfo
Department of Computer Science
Columbia University
{weijen,sal}@cs.columbia.edu

Abstract

Embedding malcode within documents provides a convenient meansetfapiaig systems which may
be unreachable by network-level service attacks. Such attarkbe very targeted and difficult to detect
compared to the typical network worm threat due to the multituddoofiment-exchange vectors.
Detecting malcode embedded in a document is difficult owindgnéocobmplexity of modern document
formats that provide ample opportunity to embed code in a myfiadys. We focus on Microsoft Word
documents as malcode carriers as a case study in this papetradtiace a hybrid system that integrates
static and dynamic techniques to detect the presence anwrhoohimalware embedded in documents.
The system is designed to automatically update its detectiolelsito improve accuracy over time. The
overall hybrid detection system with a learning feedback loopeisonstrated to achieve a 99.27%
detection rate and 3.16% false positive rate on a corpus of 6228 Word documents.

1. Introduction

Modern document formats are fundamentally object containetsptbaide a convenient “code-
injection platform.” One can embed many types of objects irtocament, not only scripts, tables, and
media, but also arbitrary code used to render some embedded objegttgbea Many cases have been
reported where malcode has been embedded in documents (e.g., PDFEX¢etd,and PowerPoint
[1,2,3]) transforming them into a vehicle for host intrusions.,cldé bearing documents can be easily
delivered and bypass all the network firewalls and intrusletection systems when posted on an
arbitrary website as a passive “drive by” Trojan, transaibver emails, or introduced to systems by
storage media such as CD-ROMs and USB drives. Furthermaekeat can use such documents as a
stepping stone to reach other systems, unreachable via tharraegtwork. Consequently, any machine
inside an organization with the ability to open a document can betimenepreading point for the
malcode to reach any host within that organization.

In this study, we focus on Microsoft Word document files. Microsoffice documents are
implemented in Object Linking and Embedding (OLE) structured ggofarmat, in which any arbitrary
code could be embedded and executed [4,5]. There is nothing new aboestreerof viruses in email
streams, embedded as attached documents, nor is the use of malmooas a new threat [6,7], (e.g., in
Word documents). However, neither signature-based state of tttaetaction nor simply disabling
macros solves the problem; any form of code may be embedded in Wardeatds, for which no easy
solution is available other than not using Word altogether.

To better illustrate the complexity of the task of identifyimalcode in documents, we first briefly
introduce two possible attack scenarios:

Execution strategies of embedded malcod&he most common attack strategy is to architect the
injected code that would be executed automatically when thendot is opened, closed, or saved. In
addition to such techniques, some selective attacks aredctaftappear as a button or an icon with a
phishing-like message that tricks a user to manually lathelmalcode. The screen shot in Figure 1-a is
an example of a Word document with embedded malcode, in this capg af the Slammer worm, with
a message enticing a user to click on the icon and launch the malcode.

Dormant malcode in multi-partite attacks: Another stealth tactic is to embed malcode in
documents that is not activated when rendering the document nor binteseention, bur rather the

malcode waits quietly in the target environment for another future dttatkould retrieve the document
from disk and then launches the embedded malcode. This multepattack strategy could be used to
successfully embed an arbitrarily large and sophisticatedctioe of malcode components across
multiple documents. The screen shot in Figure 1-b demonstrates aplexa@membedding a known
malicious code, in this case Slammer, into an otherwise normal Wémument. There is no indication of
the presence of Slammer, not even from the host AV scannencthades signatures for Slammer. With
the malcode sitting idly in memory, the document opens entireljallyr and causes no discernible
unusual system behavior from normal documents. Similar scenariosothatne multiple attacks have
been studied. Bontchev [6] discussed a new macro attack that casatexidy combining two known
malicious macros. (e.g., a macro virus resides on a machintheanoacro virus reaches it, and
“mutates” into a third virus.) Filiol et al. [8] analyzéite complexity of another type of viruses named k-
ary viruses, which combine actions of multiple attacks.

& embed_object, doc - Microsoft Word E@@ 2l modified. doc - Microsoft Word
FHle Edi Wew Inset Fomat ook Table Window Help EEX fle Edt Vew Insert Format Iools Table window Help =5
Final Showing Markup ~ ~ Ghow = | & ®p &3 = P - (3~ 2 » Momal+20pt « 20 « B = = 7|| FinalshovingMarkup ~ Showr &} #p EF - Kp - {3 B 7 mNemal+lept v 16+ B =EE 7
DEE% SRy B < AFOR=B BT Q. ||DsEg 8QRY B < CHOR=B|E T we -3,
e [l T e e e
i o . This 15 a normal Microsoft Word document.
- [This 15 a normal Microsott Word document. |
% ; Table:
H e o |Rowl A B
- Sample Table T: % } o I = } 5
“|Row 1 A B : = -
|Row 2 C D Chart:
: b This is a sample Excel chart
5
- Embedded Object: A (F
.«:\ b . 6 P25 |
i 3 5
& " —e—Series
; CLICK HERE b e Seres?
s 3
- CLICK HERE to review the TAX savings you will .
5 achieve usimng the 401 (k) mvestment strategy. £ BE
2 =l 0 T T |
7 - 1 2 3 £
- o s
] . .
=a[E= 4] | N | ERICIERY | |
Dawr Iy auoshapes- N WO OER 4 B - ZL-A-=E=58 6. Draw~ [t | amoshapes~ N W JOE B 4l BE &-ZL-A-=S=S8B @ .
Page 1 Sec 1 11 At 1" ln1 Col 1 R Engish (.5 [C8f Page 1 Sec 1 1L Ak 1" it Calt Engish (U5 GF

Figure 1. Left (1-a): A screen shot of an embedded execudhjdet to entice the user to click and launch
malcode. Right (1-b): Example of malicious code (Slammer) embedded in a normal docume

Approaches to malware detection can be roughly categorized iot@r®as: static and dynamic.
Static approaches analyze the binary content of malwaleouwtitexecuting the code [9-18], while
dynamic approaches execute the malware in emulated environmentdserve the run-time behavior
[19-24]. However, both approaches, static and dynamic, have wsakne€urrent work on
polymorphism [25-28] suggests it is futile to compute a signahweéel of all possible malicious code
segments. AV Scanners will likely be obsolete. Dynamic deteetpproaches may also be thwarted by
stealthy mimicry attacks [29, 30] that may be crafted sbhel it produces no discernible and easily
viewable change to the execution environment. Hence, neither techrogeevall solve the problem in
its entirety. However, their combination may substantiallgrimae the ability to detect a wide variety of
malcode bearing documents.

In our prior work [37], we proposed two directions to detect malicious Word docuraesitgic and a
dynamic approach, but several open issues remained that we nowsaddrthis paper, we present a

hybrid system we call SPARSEhat combines multiple detectors and various detection stratexies
detect malicious documents as well the location of the embeddkxbde. Specifically, we present a

static detector that characterizes the binary contentoaiiment files and a dynamic event detector
system that models the system'’s run-time behavior.

We provide an effective means of combining both static and dyndetéction methodologies in an
integrated system and present several new detection methodsmgiratve upon the sandboxing
approaches previously developed. In our prior work VM images w@mpared before and after opening
a document. This limited view of the dynamic execution of a docuraadering application could easily
miss important system events indicating the presence of stealtityoosicode execution.

To activate and examine passive embedded objects that rdguman action to launch, we
implemented a mechanism that automatically interacts twéldocument to simulate user click behavior
to purposely launch embedded objects that may harbor malcode. Fumberto detect stealthy
embedded malcode that may mimic normal execution behavior, vegluge a technique inspired by
instruction set randomization technigues, that thwart code injeatiaoks, that randomly changes data
values in certain sections of Word documents to cause maldhgdedaFinally, we introduce a method
to locate the malicious portion embedded in a document by removingelztans one at a time and
testing for the presence of malcode in each. This strateiggnly locates the malcode but the extracted
section with the malcode can be used as data for an intedeatiohck loop to update the models to
improve the accuracy of the detector over time.

We report a series of experiments to quantify the detecticuracy of the hybrid SPARSE system.
The result shows that the integrated system outperformsoédbb individual constituent detectors and
achieves an overall 99.27% detection rate and 3.16% false paaiitvesing a sample of 6,228 Word
documents acquired from public sources. We do not argue that our apmqasftiect; however, we
demonstrate that a hybrid detection system combining variousidetetitategies can enhance the level
of protection, certainly beyond signature-based methods. The reddt mttackers who craft documents
with embedded malcode will expend far more effort to create undeteptaldede bearing documents.

The contributions of this paper are:

1. A hybrid detection system that integrates a static file binary cotét¢ettor and a dynamic run-
time system event detector. The system not only accurately deigat®us documents but also
can automatically generate new data to update the detection model.

2. A malcode locating mechanism that indicates the malicious portion of teshdots.

3. A data randomization method to disable and detect embedded stealthy malcode.

4. An automaton simulating a user’s interaction with documents to launch embedelets &dnj test
by the dynamic analysis component.

5. A static analysis of sections harboring malcode using entropy atigsimay provide a useful
forensic tool to inspect document content.

The paper is organized as follows. In Section 2, we discuss related wark@extion 3 we detail our

techniques, including the integrated detection system and, subsequentlyeteatdr énd detection
method. We evaluate our approach in Section 4 and conclude the paper in Section 5.

2. Background and Related Work

2.1 Binary Content File Analysis

! Initial work on this problem was primarily focused Statistical PARSing of the binary content ofaiments
leading to the name of the system as SPARSE. Destimay also be quite sparsely populated with nagco
compared to the rest of a document’s benign content

Statistical analysis of file binary contents has been studigdcent years including statistical n-gram
modeling techniques in which the distribution of the frequency-grain, as well as a mixture of higher
order n-grams, are computed to model file content of various tjelO, 11]. Shaner’'s work [12] is

probably among the earliest work of this type applied to tharpicontent of files. Abou-Assaleh et al.
[14] detect worms and viruses based on the frequency ofrcergiams, and Karim et al. [15] define a
variation on n-grams called “n-perms,” which represents evergilgespermutation of an n-gram

sequence that may be used to match possibly permuted malicibeisBmth appear later than related
work on payload anomaly detection and malcode baring document detection [9, 10, 11].

Some work has been done to automatically identify the typanotinknown file based upon a
statistical model of its content. Goel [16] introduces a $igeamatching technique based on
Kolmogorov complexity metrics. McDaniel and Heydari [17] introdudgorthms for generating
“fingerprints” of file types using byte-value distributions by garting a single model for the entire class.
However, instead of computing multiple centroid models, theyth@ statistics of different subtypes and
compute loose information by averaging the statistics of exampleERL proposes the Detector and
Extractor of Fileprints (DEF) process for data protectiod automatic file identification [18]. They
identify the data type of unknown files by generating visual restadled fileprints, and measuring the
integrity of a data sequence.

2.2 Dynamic System behavior detection

Anomaly detection based on system calls has been studied fsr ¥earest et al. introduced the
earliest approach [31], while others improved upon the technique byarating system call arguments
[32, 33]. On the other hand, recent studies have shown that mirttecksa[29, 30] that utilize legitimate
sequence of system calls, or even system calls with argumentsackndetection if crafted properly.

To monitor and collect the system run-time behavior such @asnsysalls, sandboxing is a common
technique where it is safe to execute possibly unsafe ¢meexample, the Norman Sandbox [19]
simulates an entire machine as if it were connectednetwork. By monitoring the Windows DLLs
activated by programs, it stops and quarantines programs that eaftribitmal behavior. CWSandbox
[20] employs an API hooking technique that hooks onto the Win32 API to gather systenocalatidn.
TTAnalyze [21] runs a CPU emulator, QEMU, which runs on many lopsrating systems.
BrowserShield [22], developed by Microsoft Research, instrument ddebescripts to protect against
HTML-based Web attacks that is similar in spirit to @pproach to detect embedded malcode in
documents.

2.3 Steganalysis, Polymorphism, and Mimicry Attacks

Steganography is a technique that hides secret messages aribanttierwise normal appearing objects
or communication channels. Provos [34] studies cleverly embeddeeigtibrmaterial within media
objects that evades statistical analysis while maintaining whatosieeappears to be completely normal-
appearing objects (e.g., a sensible image). Similarly, polymorpblmnigues have been exploited to
deceive signature-based IDSes. ADMutate [25] and CLET [26ft gralymorphic worms with
vulnerability-exploiting shellcode to defeat simple static arlgrdatectors. According to the statistical
distribution learned by sniffing the environment, Lee et al. [27]ctnjporphed padding bytes into the
code allowing the code to have a “normal” appearing statistiaicterization. Song et al. [28] suggest
it is futile to compute a set of signature models of nalisi code, and hence identifying malcode
embedded in a document using signature-based approaches may not be the wéggst stra
Steganography and polymorphism are convenient techniques for “iyiinaitack; the malcode is
shaped to mimic the statistical characteristics of thbeeltled host or the normal objects, in order to
avoid inspection and detection. Furthermore, there exist minatigcks [29, 30] that mimic the
legitimate dynamic system behavior to evade system cadldbdstection. The file data randomization
technique introduced in this paper may counter these obfuscatlmmdees since either the encrypted

code or the decoder hiding in documents is randomly modified andnitsidnality may be disabled
potentially leading to its detection if the modification results instesy crash.

3. The Detection System

In this section, we first describe the design of our detestjgstem. Section 3.1 provides an overview of
the entire system and how the components are related. Section 3.2 edrtiieidlocument parser and
Section 3.3 describes the static detector. The dynamic sandbolkeaddta randomization technique to
detect stealthy embedded malcode are presented in 3.4, whileethednused to locate the malicious
portion of documents is presented in Section 3.5.

3.1 System Design

The SPARSE detection system, shown in Figure 2, includes the daicparser, the static detector, the
dynamic run-time system event detector, and the malcode lo¢atst, the document parser parses
documents into constituent object embedding structures and extrastditidual data objects, in order
to model instances of the same types together, without mixing data from entylipk of objects. Second,
the static detector, which is based on analyzing the file yioantent, employs a 2-class mutual
information detection strategy and contains both a benign modelelist)itand a malicious model
(blacklist). The third component, the dynamic system eventieids a virtual machine in which we
execute Word and observe the system’s behavior when opening docurireadtg, the malcode locator
is also a virtual machine running parallel to the other detectors and is designed to test suspicious code
detected by the previous components and to further indicate wienmmdlcode is located. The host
control system, the document parser, and the three detectgosiraegily implemented in Java; other
functions, such as connecting the components and operating the VNogr@mmed in script languages
(e.g., batch script and Autolt [35]). The main program shown in Figusenamed SPARSEGUI, which
is a graphical user interface that parses documents, psdvidéc statistical analysis, and performs all of
the experiments.

Test Document Document Parser
F Y 'y
h 4 Y b 4
Static Detector: If labeled
Detects malicious file binary content [pasitive *| Malcode Locator:
If labeled Tests each of the
negative parsed sections and
v finds the malicious
Dynamic Detector: Iflabeled | portion
Detects malicious system events positive
If labeled
negative

1. Update the malicious
model (blacklist) of the

The document is benign Eatia datE T

2. Report an alarm

Figure 2: The SPARSE system design.

The entire system is operated as a series of detettmsest document is sent to the static detector,
and the static detector calls the parser to separat@tiienént into individual sections and compares the
byte information against its set of models each conditioned stimati object types. If labeled negative
(benign), the document is subjected to further tests using the dyrdetector. Subsequently, the
dynamic detector renders the document and monitors the system’sobbeliakie dynamic detector also
labels it negative, the document is deemed benign. On the othdr ificeither detector labels the
document positive, it is labeled malicious and it is subsequently procesgedrbgltode locator

One may set low thresholds using the SPARSEGUI so the falgevgdEP) rate is minimized in
both detectors. Moreover, the false negative (FN) rate is reduced gnatintg the detection results of the
two detectors. Specifically, the test document is deemedtima if it is labeled positive by either
detector, and it is deemed benign if both detectors say negitizenalcode locator parses the document
into sections and tests them in the VM to determine whicaréy (malicious. Furthermore, the malicious
portion(s) found in this malcode locator are used to update theignalimodel in the static detector. The
detailed techniques are described in the following sections.

B SPARSE
Dynamic Test r Static Experiment | Parse a Doc

[7) suramaryintoreation
D DocumentSummarylnformation
D WordDocument

[1»

Parse A File

Entropy Window Size: |50 | [] only ASCll value

[y 17anle =
i o= [OhjectPool —
Contains... Macro
| o= [Macros =
| T -
Byte Value Entropy Distribution
078
% = 0.50 »1
= 5 .. M -;b-'?“"“'\ -
[t 25 !
2 @ L » U\
0.00
él 1,000 2,000 3,000 4,000 5-.;]00 G_DCICI_ a 1,000 ;.;’6_0 3,000 4,000 5 .;ZI-O_Q_ _;._OOCI_
Byte Sequence Byte Sequence
Byte Content
Jection:lTable, 3tart offset: 00013400 ;
OFFSET | | BYTE WALTE [ASCIT VALUE =
gools4o00 || 12 00 16 00 0& 00 Ol 00 5B 00 OF 00 02 00 00 00 || oeewenns [ate e
00013410 || 00 00 00 00 30 00 00 40 Fl FF 02 00 30 00 OC 00 || «ewoOu @, aDo..
0ools4z0 || o0e 00 4E 00 6F 00 72 00 60 00 &6l 00 &C 00 00 0o || I e et R e e
0o013430 || 02 00 00 00 10 00 5F 43 01 04 6D 45 09 04 73 43 || H..uH..sH
00013440 || 05 04 74 48 09 04 00 00 OO0 00 00 OO0 00 00 00 00 || ocHeeoowwwwwnnnas
00013450 || 00 00 00 00 00 00 00 00 3C 00 41 40 F2 FF 4L 00 || veweeans <. A0,
0ool3460 || 3C 00 0OC 01 16 00 44 00 65 00 66 00 61 00 75 00 || <.....D.e.f.a.u.
00013470 || 6C 00 74 00 20 00 50 00 61 00 72 00 61 00 &7 00 || l.t. .P.a.r.a.d.
oools4so || 72 00 61 00 70 00 68 00 20 00 46 00 6F 00 6E 00 || r.a.p.h. .F.o.n.
00015490 || 74 00 00 00 00 00 00 00 OO0 00 00 00 00 00 2C 00 || Coweeevansnnss e =

Figure 3: A screenshot of SPARSEGUI

3.2 Document Parser

The MS Office format — OLE (Object Linking and Embedding) storage steycthown in Figure 4 —is a
complex proprietary format that contains many object types sushriggs, images, and arbitrary code.
This vast array of different kinds of embedded objects oag encounter in Word files led us

immediately to consider methods to extract the differeamidiof objects, and then to model each object
type separately; otherwise the statistical characteimof different kinds of objects would be blended
together likely producing poor characterizations of what mayroenial” content. This finer-grained
approach also provides the opportunity to hone in on the precismtowadiere the malicious component
may be embedded. Furthermore, isolation of embedded objects wouldnhielentifying vulnerable
third-party programs and libraries used to render these objectpr@pgietary media objects containing
malcode.

For the static detector, we parse the documents into indepetsdations” and model them
separately. (The nodes shown in Figure 4 are referred to a@®fsean the rest of this paper.) By the
means of the parser, we can build multiple static modelfhéoparsed sections instead of using a single
model for the whole file. A set of training documents are pamsddtee models are computed using all of
the parsed sections, one model for each section type, such,dalikss, macros, and other data objects.
A weight is computed for each model that is proportional to the data lengiblo§ection.

Test files are compared against the models after beingcasing the same process. Each section of
a test document is compared against the trained models produsimgjaaity score for that section. A
final weighted similarity score is computed by summing the @eciicores. Moreover, the dynamic
malcode locator also takes advantage of the parser. The médcatier extracts the parsed sections and
tests them individually as described in section 3.5.

3 M3 Word
E‘] Summarinformation

E‘| DocumentSummarginformation

E‘] WardDocurment

[y 1Table

[y componj

% [OhjectPanl

- [0 1168800406
[componi
[Ty obijinfo
[ocxoaTA
[y PRINT

o [1168200407

o= 5 1168500403

¢] Macros
[PROJECT

[PROJECTIK
[PROJECTwm
o i T
|_j ThisDocurment
[y _vBA_PROJECT
[y dir
B Data

Figure 4: An example of a parsed document in OLE format

3.3. Static Detector

The static detector is based on the Anagram algorithm [9] whésh originally devised for detecting

malicious exploits in network traffic. Anagram extracts and rsodegh order n-grams exposing
significant anomalous byte sequences. All necessary n-grarmation is stored in highly compact and
efficient Bloom filters [36] reducing significantly th@ace complexity of the detection algorithm. The
detailed algorithm used to detect malicious documents is dedciib[37] in which a 2-class mutual
information modeling technique (i.e. one benign model and one malitiodsl) is suggested. Note that
both the benign and the malicious model referred in theofakis paper actually represent a set of sub-
models in which each contains the n-gram information of a specific pargihsec

The 2-class technique classifies the test document, eithimbenmalicious, depending on which
model returns a higher similarity score, and this tactic hdsehigccuracy than 1-class anomaly detection
that may suffer from a high False Positive rate. Howeter2tclass strategy may fail to detect zero-day
attacks — a zero-day attack may be similar to neitleeibenign nor the malicious model. There is little
hope in increasing the detection accuracy without introducing nadse &larms by using this single
approach.

Hence, a hybrid detection system that utilizes dynamic infoomatiay provide a better chance to
detect embedded malcode. We minimize the FP rate in this (stetézjtor and leave the labeled negative
test documents to the next dynamic detector. To lower the FRveteain the malicious model using a
significant number of known malcode samples and set the threshéldhtsonly malcode that is very
close to the model will create an alarm. In other words, we puypsetthe threshold logic favoring
benign documents, and possibly zero-day malware, that would have sinharity score computed
against the malicious model. The malicious model is updated byaeedibm the malcode locator
(detailed in Section 3.5) in which we extract the maliciougiaes and use them to train the static
malicious model, while ignoring the benign portions.

3.4 Dynamic Sandbox

3.4.1 Dynamic System Event Detector

In this section, we introduce our dynamic detector that monit@system run-time behavior. Several
types of sandboxes exist for analyzing a programs’ dynamic beh&waiore approaches utilize controlled
environments [21], while others take a snapshot on only a spsteifec[24] or compare the image before
and after executing the malware [37]. The disadvantage of thelseiques is that only a limited view of
the system is monitored. A certain number of run-time systemtgwdo not reside in memory after the
emulation is completed, and some system events will not be produbedést environments are strictly
controlled. In both cases, the malicious behavior may not be observed.dsituument formats are not
only vulnerable applications (e.g. attackers exploit the bugs in Winword.exalsbutonvenient malcode
containers (e.g. any type of objects can be embedded by usiad) tethniques), our detection system
must be able to monitor all possible run-time behavior. Asdtrdéise entire virtual machine became the
best choice for our study. Although an entire virtual machine ig mgpensive than emulators and may
be vulnerable to some attacks [38], our approach has signifechrintages. The dynamic system
behavior can be observed in the virtual machine; no actisityissed. Furthermore, an entire virtual
machine with a complete operating system allows us to aefita to simulate human interaction with
the test application in the sandbox (e.g., the passive attacjemisotan be activated). Not only can our
system detect malware, but it can also report malicioust®ve other third party applications. All of
these processes are automated by the SPARSEGUI and script programs.

We implemented the system in VMware Workstation, under whicimstell Microsoft Windows XP
SP2 and MS Office with no patches installed. To capture théimensystem behavior, we use Process
Monitor [39]. Process Monitor is a process hooking monitoring flmoWindows that captures various
system events. Similar to modeling system calls with aegiisn we monitor more specific system
information including files created/modified, modules loaded, mgg@tcessed/changed, and process
activity. We refer to all of these as “system events” in theafebtis paper.

A system event, appearing like a system call along wstarigument, is defined as the concatenation
of the operation type and the file path. For example, a model is sinokigure 5, in which the system
events are recorded by rendering a Word document on Windows. Ifigtims, “CreateFile, c:\a.reg”
means that the operation is “CreafeFile” and the file gath:\a.reg.” Figure 5 is a simplified example;
however, when a Word document is opened in Windows, there are thousateds of thousands of
individual system events. Among these system events, ther@0adistinct operations and hundreds of
distinct system events.

The system events, displayed in Figure 5, were captured by executing a WrdtV§ clear that the
virus replaced the original system file regedit.exeater® some DLLs, and changed the security setting.
Apparently, opening normal documents does not execute regedit.exiwesdot exhibit these unusual
events. Hence, this particular virus would be trivially detectesthabnormal execution of Word.

WINWORD.EXE

RegCreatekey, hkcu\software'\microsofti\office
Regsetvalue, hkcu‘\software‘microsoftioffice'xp
CreateFile, c:\a.reg

writeFile, c:\a.reg

Queryopen, c:‘\windows\regedit.exe

CreateFile, c:\windows'regedit.exe
QuerystandardInformationFile, c:‘\windows\regedit.exe
rReadrile, c:\windows'\regedit.exe

Process Create, c:‘\windows\regedit.exe

Process Start, regedit.exe

Thread Create, regedit.exe

ooooooo

|||||||

Createrile, c:'\windows'winsxs \x86_microsoft.windows.
common-controls_6595b64144ccf1df_6, 0. 2600, 2982 _x-ww_ac3f9c03\comct132.d11
CreateFile, c:‘\windows'system32\authz.dl]l

Createrile, c:‘windows'system32\aclui.dl1

CreatefFile, c:‘windows'system32\clb.dl1

RegCreateKey, hkcu\software'microsoft'office’\10.0\word\security
RegCreatekey, hkcu'software

RegCreateKey, hkcu'software'microsoft

rRegClosekey, hkcu'\software

RegCreatekey, hkcul\software‘\microsoft'office

RegClosekey, hkcu‘software\microsoft

rRegCreatekKey, hkcu'\software'\microsoft\office’\10.0

regsetvalue, hkcu'\software'\microsoft'\office\10.0\word\security'\level

Figure 5: A sample system behavior profile when opening a document.

To model the dynamic system events, we also chose to usenidngrafn algorithm, but here
considering a distinct system event as a distinct tokencéjahe algorithm is used to model n-grams
representing the behavior of Word while opening documents. For exam#-gram is a contiguous
sequence of three system events. In Figure 5, each systenisergpresented by a long string, which is
very space inefficient. To reduce the model space, we takehe& system event by assigning each a
unique index. For example, if we assign “RegCreateKey, hkcu\sefiwmrosoft\office” the index 1,
“RegSetValue, hkcu\software\microsoft\office\xp” as 2, “Ce€idle, c:\a.reg” as 3,then this sequence of
three events is a 3-gram, <1, 2, 3>.

The n-gram system events recorded by opening a set of docuheantshe VM is denoted as

g(D,n) . Therefore, when training a number of documddjs,, , the model is denoted a&gD,;,,N) .
In the same fashion that Anagram uses a Bloom filter modefjomeot compute the frequency of n-

grams; instead, we only record whether or not the n-granst exig(D,,,,n) . When testing the
s) that exist ing(D,,,,N) ,

to the total number of n-grams

documentd,.;,
denoted asN

we collectg(d,.,,n) and compute the number gfd

test?

Finally, the similarity score is the ratio &

exist * exist

ing(d

test?

N..
n), denoted a3. That is, Score= %‘S‘

We implemented a 1-class anomaly detection strategy usingnidgran algorithm; that is, we only
train a “benign model.” A single model is computed representihgystem events recorded when
opening thousands of normal training documents. A test document is openddeasygbtem events
exhibited are tested against this model. If the test docupreduces a similarity score lower than a
preset threshold, it is deemed anomaldiee detector also checks whether there is any abnormal popup
window (e.g., some attacks display popup windows, and Word also has popupatidn when it
encounters exceptions). A timeout is set on the detector in cases where malshds the OS in the VM;
the detector will report this time out as a malicious document as well

In addition to simply opening the document and observing system behagiatso implemented an
automaton that executes the embedded objects in documents. We eénstdirAutolt [35], a script
language for automating Windows GUI applications, to simulateatdiems such as hot-keys and cursor
activities. We use AutolT to exploit the functions listedtba Word menu bar to select and execute the
embedded objects. For example, the object icons on the document canhsel ey selecting théo To
command in Word (i.e. Ctrl+G) and be executed by clicilotvate Contenin the Edit drop-down list
on the menu bar. Moreover, Autolt can also emulate some singl@ctsons such as saving and closing
the document. In our experiments, we only utilize a few common useatiops; a complete exploration
of simulating a complete set of human interactions remains an open problentuferrésearch [40, 41].

3.4.2 Document Data Randomization

One of the primary concerns of the dynamic system event detéstine exploitation by mimicry attacks
[29, 30]. The approach described in 3.4.1 models sequences of pairs of system operatibedile path,
using the Anagram algorithm. This dynamic detector could beeelvid the malcode utilized exactly the
same sequences of operations (with arguments) as captured Ibertign document model. Such
information would generally be available to an attackerrbining their own model on other publicly
available documents. To counter this mimicry technique, wedntre an approach that modifies possible
embedded malcode by randomly changing the data values of certaintc®htsrstrategy was inspired
by the technique of instruction set randomization (ISR) [42, dB]tHwarting code injection attacks.
Whereas ISR randomly maps the instruction set of a progranstridtegy we use in SPARSE is to
randomize data values in the document that may render any embedded malcodévieopera

Before detailing the approach, we briefly describe how oaanay be embedded and launched in
documents Word itself may harbor a vulnerability that is easily explhi The attacker may craft data
that exploits the vulnerability which returns an invalid memadgress and causes a buffer overflow.
Subsequently, Word jumps to a specific location to execute thevdoida is usually 4 bytes long (i.e.
this could be an exception handling function or just a bug). Since not raadhecaccomplished in a 4-
byte code, the attacker has to craft this as a jump that poiatsother portion of the document in which
the malcode is embedded, and this space is either a padding arearoral data area. In fact, the 4-byte
code sequences exploited in the attacks that were available tostisdpiare also in the data area.

2 This is different from traditional macro attacEsnce macros are VBA code and are usually locatee
“Macros” or “WordDocument” section, identifying nigibus macros is easier than the recent exploitd ®fOffice
vulnerabilities

10

The proprietary Microsoft document format is intricate. In gelnierms, we may categorize the byte
content of a Word document into two types: the data and the pototéne data (or the length of data).
When processing a document, Word first looks for the pointers which absalute or relative locations;
these pointers tell Word where to find the data that spetifeeslocument rendering function by its type
(e.g., text, images, or tables). The data values are eithet data values or information telling Word
how to display (e.g., size and style). In addition, there are some “magic numbensieicases which are
keywords and cannot be changed without crashing Word. For example, dficRffice reference
schemas [44] are streams that cannot be arbitrarily modified.

Embedding malcode in the pointers is difficult because theysarally short (i.e. from 1 bit to a few
bytes) and it is hard to exploit these sections without beinlg &asily noticed (e.g., by introducing high
entropy values in a certain area or significantly increasing the docuizent €rashing the system.) As a
result, an attacker would likely find it most convenient arid gaembed their malicious shellcode in the
data or the padding areas of a document.

To counter this type of attack, we randomly change the data pottaslightly different values, for
all of the non-zero data values that can be changed. Speygifiallall of the byte values that can be
changed (i.e. neither keywords nor pointers), we randomly ire@adecrease by some arbitrary vatue
(e.g., changing the character “A” to “B”). In our test cases,hlue ofx ranged from 1 to 3. In many
cases, the rendering of the document display will likely istoded, but this is what we expect. For
example, the images in Word documents are placed in the datms&andomly changing the value of
the image content won'’t break the system but will damage the appearaneenasfge. On the other hand,
stealthy embedded malcode residing in the data portion, if tkeamy, will also be changed, and
subsequently either Word will crash or the malcode will be disabled amattempt is made to execute it.

For example, the hexadecimal Opcode value “6A” and “EB” reptetiee push and jmp X86
instructions, respectively. If the byte values are increasetl fiyey become “6B” and “EC” which are
not correct Opcodes. Even though sometimes the changed code is valid, it can betberecampletely
unintended instruction. As a result, the program or the QISnei be able to correctly execute the
attackers’ shellcode and will either crash or terminategtbeess. Hence, whether the shellcode exhibits
obvious or mimicry behavior, our system can detect it by the datiomization process, as long as the
increment value is randomly chosen and kept secret from the attacker.

On the other hand, some normal ASCII data used in the “1Tablebrsenty appear like “Times
New Roman” whose corresponding byte values are “54 69 6D 65 73 20 4E 65 76R®GbH261 6E.”
Probably these are the data that describe the text typsplaydiChanging any of these values to another
random value, including the extended ASCII characters, would never craghWerworst case is Word
displays a blank page or displays some strange charatterse also exist a few byte sequences that
cannot be changed such as keywords [44]. Indeed, some changesusey\ord to be unable to display
the content at all, and these documents are considered as FRs/eHoword does not crash in these
cases; instead, it displays a message indicating thaddatiement may be damaged. We doubt a true
attack would cause this message to be displayed. If th& ateae crafted to display this error message
(but not crash the system), it would appear before we apply the data rasttlmmizocess, but not after.

3.5 Malcode Locator

The last component, the malcode locator, is also executedviual machine sandbox. Once a
document is deemed malicious by one of the previous detectors, want@nthe section responsible for
the malicious behavior. The locator statically parses thedmsiment into separate sections and tests
each of them in the sandbox. However, this method may be flawesl malcode may not reside in only
one single section. For example, there could be a pointer in diensdicecting Word to execute code in
another section. Testing either section alone may not reveal theouslbehavior.

Thus, we introduce an alternative strategy: we remove @isestd test the rest together. Assuming a
document DocO contains three sections Secl, Sec2, and Sec3, weegdmeeahew documents, Docl,
Doc2, Doc3, and each contains two of the three sections. In other waniisnew document has one

11

section removed from the original document. We then execute theabragnd the three new documents
in the sandbox. If only DocO and Docl1 show malicious behavior (e.g., boththesystem, or Doc1 has
a similar set of malicious system events to DocO0), thekneer that Sec2 and Sec3 contain the malcode.
Doc2 and Doc3 behave normally because Sec2 and Sec3 are removediivebgpeifter this
examination, the labeled malicious section, Sec2 and Sec3, irafigiswill be used to update the static
malicious model, the blacklist. One may argue that, formgk@, the pointer section should not be
considered malicious because it doesn't harm the system. Howsinee the malcode will not be
executed without this pointer, we consider both as malicious.

In practice, the sandbox setup of the malcode locator is idetdi¢he dynamic detector. They are
operated separately so when the malcode locator extracts thedmaf a document, the dynamic
detector can test the next one.

In addition to the malcode locator using dynamic behavior, we alloated a method to find the
malcode using static byte value n-gram entropy analysis. Figure 6 shows aal drégiign document and
its infected version. The left two charts at the top of thdajspompare the byte sequence values, where
the upper one represents the original document and the lowes tme infected version. The right two
charts at the top of the display analyze the difference betlWwedwo by computing entropy values of the
file contents. In this figure, the entropy is the number dirgisbyte values within a 50-gram window.
Apparently, the tainted portion has high entropy values and iy eiésihguished from data appearing in
normal text.

| Parse ADoc | Load Experimental Files : Run Experiment | NGram Analysis
Byte Value Entropy Distribution
2 -)'{"‘lf‘““"ﬂ'”"“a"w“‘lfi| hT n
| \
= W LWL
:.5‘00 D.C;CIU f.h-UU) 2.5-00 5.‘(;00 T !!-00
Byte Sequence Byte Sequence
Byte Value Eftropy Distribution
; 1l
= i " il l
g ; WWM‘ [“1 ") ‘
| 4] | 1
: af ik W LTULIL
2,500 5,000 7.500 2,500 5,000 7.500
Byte S ence Byte Sequence

Infected Portion

Byte Content

00000310 || 00 00 OB 02 00 GDAE;l 00 00 34 01 0000 16 00 || +.vrmommenfonnns |
00000320 || 00 00 50 O1 00 OO OD (O OO0 00 50 01 OO0 00 00 00 |1 +uPacacaas Picaas (=
00000330 || 00 00 50 01 00 00 00 00 00 00 50 01 00 00 0000 || ..P....... R B
00000340 41 0O OO 50 01 00 00 Al F1 84 35 15 10 FE 81 41 [R S— Seaaadhs
00000350 41 62 71 58 C§ B3 4D A2 AT 3D 7B F0 Th CE EV §E 3 Il bgl..M..={.2...3
00000360 41 23 A8 4D 36 Al E0 D2 5D 46 E3 32 3F DE 9C BF B |1 #:M6...]F22. .5
00000370 41 Th 20 21 8E 1E D6 A B4 Bh 18 E0 4F 1% 66 Il 2=teasanias O[.fZ
00000380 §I A3 4B FB 63 77 49 D7 8E F7 02 3F DC B3 19 54 I e A B B e
00000320 4| 1B 8B 41 84 38 92 55 0B 9 C9 D5 57 92 91 BO Il BT, Wl
00000340 {I A1 B4 97 04 2F 49 57 8C 80 D& 66 70 E5 BE BB 9 B e il e B
000OD3ED {1 2F D2 E3 33 69 48 52 B3 CT1 D6 F? 16 D9 16 13 7 8 A s SR r
000003CO 41 04 2C 4R Rl 33 A8 FB 60 CA RE (D 82 DC 54 & Il «pdadea’vansaTuz
00000300 §I 9D 4B 31 21 1A C2 46 B4 27 87 6D 1C 99 6F 37 7 Il -K1!..F.'.m,.078 [
{alalulalukeddal L BE TN _30 02 BA_A% £ 11 DO O 0 G T A Lm 1L o< . nl L

Figure 6:SPARSEGUI screen-shot: parse a benign document compared to its infested ve

To evaluate whether examining the entropy value can detect maledgerformed a 5-fold
crossover-validation test of benign and malicious documents. Ebrtest document, we computed the

12

50-gram entropy. If the document had 50-gram entropy values higheththéimreshold, it was deemed
malicious. By varying the threshold, we draw a ROC curve shawrigure 7. Apparently, this method
cannot detect malicious documents with an acceptable FPTraseis because Word document format is
complex and contains various types of objects themselves mefg@segith high entropy content. Not
only the malicious documents but also the benign documents corghiertiropy data. As a result, there
is little chance to set a proper classification threshold tereihe entire document or a specific section to
distinguish benign and malicious documents. We also tested somen-affaan sizes from 20 to 100, and
the results were similar. Hence, we conclude that examiningpgnvalue is not appropriate to detect
malicious documents.

Figure 7: ROC curve of malicious document detection by using entropy value.

Figure 8: Entropy value of the 1Table section of four known attacks.

However, we can still search for the high entropy area fonpatembedded code once a document
is labeled maliciods In Figure 8, we computed the entropy value of four known attackehich we

3 Currently the examination of entropy values isintgrated in our detection system. This is oriljzed as
additional information when manually verifying matte for forensic purposes.

13

know exactly what and where the malcode is. In this figume,dircled curves are entropy values of
malicious documents. All of the malicious contents are logatéloe high entropy area. For comparison,
the lower curves on the same scale are benign documehtthwisame length.

4. Evaluation

4.1 The Experimental Data

This section describes the data used for our evaluations,as gametina Table 1. We selected 6228,
including both benign and malicious Word documents. The labeled dajarovéded by external sources.
The performance of a statistical detection model is dependent paquality of the training data. An
insufficient training corpus will lead to a weak model; oraring the model, on the other hand, may
cause false negatives. In other words, collecting and traiaihgossible variations of legitimate
documents is likely infeasible, and it is difficult to determihé¢he training data is sufficient for the
statistical model to perform accurate examination. Thus, wergte models for a detector that is biased
to a set of data generated by a distinct organization, i.e. w@utengroup specific models. The
assumption is that documents being created, opened and exchanged witttifi@a group are likely to
be similar (through shared templates, or exchange of incremesrtsibns of the same documents,
proposals, papers, etc.). Furthermore, we fundamentally assumehéhaehaviors of malicious
documents are significantly different from the behavior of thmitmg corpus. To this end, we collected
benign documents publicly posted usimget from two specific sites, http://www.columbia.edund
http://www.nj.gov In addition, we also downloaded malicious documents from VX Hsab] and 29
carefully crafted documents with embedded malcode thae weovided by a third party for our
evaluation.

To demonstratéhe ability of SPARSE to detect zero-day attaekssorted the documents by the
date that they were created and equally split the documentswot groups (i.e. training and testing)
before and after a specific date. In the experiments, wetsel003-11-21, which was a date that
roughly split data into two sets with similar sizes. TlWis a reasonable methodology to simulate the
zero-day detection scheme because all of the documentsdcaétate2003-11-21 could be considered as
zero-day where new malcode is introduced and never seen in any documesm fartier date.

Category Malicious Training| Malicious Testing Benign Training niBa Testing

of docs 1449 1498 1715 1516

File size (k byte) | Mean:49kb Mean:49kb Mean:105kb Mean:148kb
max:1060kb max:317kb max:541kb max:903kb
min:6kb min:6kb min:2kb min:5kb

Collected from VX Heavens VX Heavens From the Wel From the Web

Timeframe 1996-02-08 to 2003-11-22 to 1996-12-10to 2003-11-21 to
2003-11-21 2006-11-26 2003-11-21 2007-1-24

Table 1: The experimental dataset. Approximately 94% of the documemrgtsrgated after 2000-01-01.
4.2 Evaluation of Document Data Randomization

To evaluate the data randomization strategy, we testedXivable” attacks exercising vulnerabilities
known to exist in earlier versions of Word that have since beehgzhin the most recent versions. In
this case we knew exactly what the malicious behavione.weor each of the test documents, we
automatically applied the randomized data method, and subsequently weedbaed compared the
dynamic behaviors when executing both the test documents and thésthedifsions in the VM. All of
the attacks were successfully detected — the data modifickaticed a system crash. A summary of the
observations is shown in Table 2. We tested three memory comrgitacks, one attack that opened the

14

calculator (i.e. cale.exe), and an encrypted attack showing a paipdpw with a “system hacked”
message.

Among the three memory corruption documents, Word couldn’t digpkydocuments, instead, it
either showed a “Your system is low on virtual memory” or raavier. A sample code is shown in Table
3. This shellcode, which was an infinite loop to corrupt the amgnwas embedded in the data area, and
by changing any of the byte values, except “01” and “02,” would disablkeiticéon (i.e. the code would
become meaningless). After applying the data randomization mathibetse three attacks, we forced
Word to terminate immediatefyafter opening the documents. It appeared Word found incorrect
embedded code and stopped the process. For the other two attacksatiom svas similar — Word was
terminated immediately.

Attack type Behavior after randomization
Attack 1 Memory corruption Word was terminated
Attack 2 Memory corruption Word was terminated
Attack 3 Memory corruption Word was terminated
Attack 4 Opened system32/calc.exe Word was terminated
Attack 5 Encrypted malcode Word was terminated

Table 2: A summary of the tested known attacks

Byte value Code Comment

BB XX XX XX XX |mov ebx, XX XX XX XX | XX XX XX XX is the attack

6A 01 push 01 Add argument of the attack

6A 02 push 02 Add argument of the attack

FF D3 call ebx Call the attack

EB F8 Jmp F8 Jump 8 bytes backward, which is 6A |01

Table 3: The shellcode example of a memory corruption attack.

For comparison, we also performed the same test scenario on 15316 ¢d@cuments. Most of them
behaved normally after the data randomization process — they didus® the system or Word to crash;
however, we could not apply the strategy to some complex benign dotsimmong these 1516 test
documents, 35 caused Word to display an error message afteinggply data randomization process
(i.e. a popup window displayed “Word was unable to read this docuihemy be corrupt.”). Although
there was an error message, the system didn’t crash. Sinste#ithy embedded malcode would never
cause Word to display this message, this could be considerbdnign. Nevertheless, in this study, we
measured them as false alarms. This does not invalidatiliheof this strategy; rather it demonstrates
our lack of sufficient knowledge of the complex binary format afriiVdocuments that inhibits the
general application of the technique. We believe those witld¢lee knowledge of Word formats can
apply this method safely to increase the security of Word documents.

Overall, we applied this data randomization process after the dynardmssgent detector, and only
applied to the labeled negative documents. This technique wddadetect stealthy embedded malcode
that otherwise did not reveal any abnormal behavior when examinglebglynamic system event
detector.

4.3 Evaluation of the Malcode Locator

For this experiment, we parsed the test documents to creamtdas@ments, in which each had a single
section removed. We observed and compared the system behaddused by executing all of the

* This was tested in Windows XP SP2 and Word 20@R no patches. Other versions of Windows and Woagt m
exhibit different error handling mechanism.

15

“original” documents to their “modified” versions. The detestscenario was the same as the dynamic
detector described in Section 3.4 — we opened the modified taghdotin the VM and observed the
system events. Because all of the test documents here \abceous, if a section was removed and the
document behaved benign, the removed section is labeled as maliciaddition to the 5 documents we
tested in 4.2, we also included 13 macro attacks which were atthehed in the “Macros” section or in
the “WordDocument” section, so there were 18 test attacks in total.

By using the malcode locator, all of the malicious sections w&ceessfully found. In some cases,
the malcode was embedded in only one section; in other cases, ttmenappeared not in a single
section. For example, a trigger was in the “WordDocument” section, butalcede was in the “Macros”
section. In such cases, both sections were determined malicidtidén Yde experiments described in
section 4.2 and 4.3, we only presented the test of a few maliciousdnts since these were the attacks
that we manually verified the location of the malcode ancervlsl the differences before and after
removing or changing data on the test documents.

In our study, the malcode locator only indicated which sectian malicious but didn’t hone in on
the specific pieces of code. We believe we can improvettaiegy by combining the technique with the
data randomization technique by modifying the section content pgatamtil failure is detected. We
leave this as future work.

4.4 Evaluation of the Detection System

In this section, we first evaluate each of the individualadete and then present the final results of the
integrated system. To evaluate the static detectotraireed and tested on all of the 6228 documents and
each of the test documents received two similarity scoresfrom the benign model and one from the
malicious model. A document was labeled benign or maliciousrdiog to which score was higher. A
model contained five sub-models that represented the “WordDocurigmgble,” “Data,” “Macros,”

and “Others” section. Each sub-model wa2?a-bit (32MB) Bloom filter so the entire model size was
160MB. We chose a large size to ameliorate the inherese FRabsitive rate of Bloom filters as they
saturate.

Table 4 summarizes the relative sizes of the Bloom filtedels. The numbers are the ratio of used
bits to the Bloom filter size. The used bits on the maliciondehwas less than the bits on the benign
model because we trained the entire file of the benign documentsligutained the malicious portions
(i.e. determined by the malcode locator) of the malicious doctanklowever, the malicious “Macros”
sub-model was larger than the benign “Macros” sub-model. Among casedst 73% of the malicious
documents contained the “Macros” section; on the other hand, only 4&eobenign documents
contained the “Macros” section.

While training or testing a document, SPARSE scans throughl¢éhanfil extracts and compares n-
grams. The overhead varied depending on the file size. The aviena® to process a document was
approximately 0.23 seconds on a Intel(R) Xeon(TM) CPU 2.66GHz magtithe3.6GB memory,
running Fedora 6.

Table 4: The proportion of bits used in the model after training documents Be0gel1-21.

Malicious model| Benign mode
WordDocument 0.98 % 21.47 %
1Table 0.15% 3.34 %
Data 0.15% 50.87 %
Macros 2.7 % 0.24 %
Others 0.46 % 12.78 %

16

After testing, we had a 0.06% FP rate (i.e. only 1 benign docunantaveled malicious) and 8.41% FN
rate. This was what we expected, since we wanted to miniimezé-P rate and leave the documents
labeled negative to be tested by the next detector.

For the dynamic system event detector, since we tended to olakrsygstem behavior and to
simulate user interaction with the documents, testing a documedecé&6 to 80 seconds. In the first 30
seconds, the VM opened the document and waited for Word to dispthyoaexecute everything
embedded; the rest of the time included waiting for Autolt tooperfsome actions and Process Monitor
to export the system information.

The first test was to examine the influence of the lengtheftystem event n-gram. Figure 9 shows
the ROC curves of a test using different lengths of n.tWeecharts represent the same results, but the
right one is on a smaller scale (the X scale is from 0.@Rlt@nd the Y scale is from 0.8 to 1.0). Notice
that when the FP rates are about 3%, the 1-gram had the thheaté, which was about 96%. The
reason is that most of the tested malicious documents in ouededased at least one never before seen
system event (i.e. a never before seen system evasieised to a “foreign gram”); however, the benign
documents usually did not introduce foreign 1-grams. More specificaityexperiment showed that the
documents used and exchanged within a specific group containgar ®bjects (or code); therefore,
Word did not launch unusual system events to display these documents.

On the other hand, higher ordered grams introduced more FPs wheéPR ttates were the same.
Because the higher the order, the more possible permutation of geamiould see. For example, if there

were in totalN unique system events, there would Neossible 1-gramsN? possible 2-gramsN?

possible 3-grams, and“ possible 4-grams. In theory, the range of possible grams grows explyient
As a result, the benign documents containing objects that wenegad in a “never-been-seen-before
order” would introduce anomalous sequences of system events against tbedbigld gram model.

Though 1-gram performed the best in this experiment, mimitagkat could still be carefully shaped
so that no foreign grams were introduced. Therefore, we chose an4aréhe rest of the evaluatiyn
and set the threshold to 0.994 which had TP rate around 85% as displayed in Figure 9

Figure 9: Evaluation of the dynamic system event detector by crosstwadidger different n-gram
length.

After testing the same scheme we did for the staticctigtethe dynamic system event detector
performed with a 3.1% FP rate (i.e. 47 documents) and 14.1% FN rateo¥lIn’t avoid a number of

® An FN is a malicious file labeled benign, whil@& is a malicious file correctly labeled maliciotrsour
evaluation, FP + TP = 100% which is the total numdféested malicious documents.

® In this paper, we experimented different gram fesaip to 4-gram to evaluate the methods. Othessbe
interested in evaluating longer n-grams.

17

FPs because many of them actually behaved abnormal. We vegiigd of them manually; some
appeared like complex forms that consumed too much memory and seme&ased exceptions on
Word (i.e. a popup window displayed “Word was unable to readdbcument. It may be corrupt.”).
These were either recklessly designed or damaged documensindmithe intent was apparently not
malicious, we considered them FPs.

For the integrated system, we combined the results of botkatieeand the dynamic detectors. Since
we set thresholds to minimize the FP rate on each detectosinypdy used “OR” for the integrated
detector. That is, if a document was labeled positive byrailtector, it is deemed malicious. Therefore,
the overall FP rate was the sum of the FP rate of both deteaftich was 3.16%, and the FN rate, which
represented the number of test malicious documents that ameked negative by both detectors, was
1.06% (16 attacks). Among these FNs, there were three Trojan-Dsdappae actually did nothing in the
sandbox, a logic attack that only launched on the first day of the monthe\ardlsvorms that only did a
guery on the system but did not have any destructive payload.

The overall results are shown in Table 5. Apparently, usindhybeid system (the third row) was
superior to any single approach (the first and the second rowdurter tested an incremental scenario
to demonstrate that the detection performance benefited from tm@nmformation produced by the
malcode locator. In this experiment, when testing each test docuihéimé, document was labeled
positive by either the static detector or the dynamic dmteete ran the malcode locator to find the
malicious sections that were then updated into the staticiowed model. The result is shown in the
fourth row in Table 5 labeled as tactic 1. The TP rate incdedsrvever, the FP rate was doubled. This
was because the dynamic detector produced 3.1% FP rate;alsesaldrmed documents were somehow
damaged but still contained legitimate data (there wese falarms by the dynamic detector but not by
the static detector). Updating the signature definition by usingetli®cuments, consequently, we
introduced legitimate information into the malicious model. To ctlis mistake, we decided to update
the model more carefully. We only updated the malicious mode¢ ifdst document was labeled positive
by both detectors; this strategy was referred to “tactid@®.using this tactic, shown in the last row in
Table 5, we increased the TP rate without increasing Rheate. Nevertheless, we could not avoid a few
FNs.

FPrate | FNrate| TP rate
Only static detector (without updating 0.06% 8.41% 92.2%
Only dynamic detector 3.1% 14.1% 85.9%
Hybrid system (without updating) 3.16% 1.06% 98.94%
Hybrid system (with updating tactic 1 7.38% 0.4% 99.6%
Hybrid system (with updating tactic 2 3.16% 0.73% 99.27%

Table 5: the overall results of testing the system and each component

In general terms, it is difficult to define “malicious ent.” For example, should we consider
recklessly designed, damaged documents malicious? In our detecitemsy malicious activity is
actually a set of anomalous system events that have notdeeinghe model. Thus, any legitimate but
anomalous code will be determined malicious. On the other handthgtesalcode which does not
produce sufficient amount of anomalous events will not triggealdyen such as the Trojan-droppers we
observed. Detecting malware laden documents remains a halenpratily partially solved by the hybrid
detection system described in this paper.

5. Conclusion

Modern document formats provide a convenient means to penetrate systemgvery kind of object or

any arbitrary code can be embedded in a document. We presestigtly auising various approaches to
detect embedded malcode in Word documents. We implemented a hybricbdedgstem that integrates

various detectors and detection schemes. First, we presentaticadstector that employs statistical

18

analysis of byte content using the Anagram model with the <2-datecting strategy. Second, together
with an automaton that simulates user interaction with documedta data randomization method that
randomly modifies data values to disable embedded malcode, a dymanrtize system event detector
was presented that is resistant to attacks spreadwveut multiple sections in a document. We also
presented a strategy to hone in on the section harboring the mafc@denalicious document by
removing and testing each portion of a document in turn. The overalidhgétection system was
demonstrated to achieve a 99.27% detection rate and 3.16% false pedéivn a corpus with 6228
documents. This hybrid detection system can not only accurately deticious documents but can also
automatically update its detection model.

Although our detection system could label a document as maliolobgnign, the system cannot
reveal the intent of any embedded code. An abnormally behavedcoldebe a new type of legitimate
use that is buggy or a recklessly designed object that couldtharsystem although it was not intended
to do so. On the other hand, attacks could be selective and stalttgre would be no discernible and
easily viewable anomalous behavior to be noticed. Hence, theoecsissy way to reach the gold standard
of 100% detection accuracy, and 0% false positive rate by anysanalgne and do so with a minimum
of computational expense, yet. We do not argue that our approachestpediwever, in this paper, we
demonstrate that by combining various detectors and strategieghrid detection system provides
improved security to detect malcode embedded in documents.

References

1. Leyden, J.: Trojan exploits unpatchedWord vulnerability. The Regidtr 2006)

2. Evers, J.: Zero-day attacks continue to hit Microsoft. News.com (Sa@t@06)

3. Kierznowski, D.: Backdooring PDF Files (September 2006)

4. http://www.microsoft.com/technet/security/Bulletin/MS07-043.mspx

5. http://www.zerodayinitiative.com/advisories/ZDI-06-034.html

6. Bontchev, V.: Possible Virus Attacks Against Integrity Programs andtbi®sevent Them. In: Proc.
2nd Int. Virus Bull. Conf. pp. 131-141 (1992)

7. Bontchev, V.: Macro Virus Identification Problems. In: Proc. 7th Int. Virus. Bahf. pp. 175-196
(2997)

8. Filiol, E., Helenius, M., Zanero, S.: Open Problems in Computer Virology. Joau@amputer
Virology, pp. 55-66 (2006)

9. Wang, K., Parekh, J., Stolfo, S.J.: Anagram: A Content Anomalyceteesistant to Mimicry Attack.
In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219, Springer, Heidelberg (2006)

10. Stolfo, S.J., Li, W.-J., Wang, K.: Fileprints: Identifying File Typesgyam Analysis. In: 2005
IEEE Information Assurance Workshop (2005)

11. Li, W.-J., Wang, K., Stolfo, S.J.: Towards Stealthy Malware DetectiorhdnChristodorescu, Wang
(eds.) Malware Detection Book, Springer, Heidelberg (2006)

12. Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data Mining Methods for etedtNew
Malicious Executables. In: IEEE Symposium on Security and Privacy, Oaklan@&y 2001)

13. Shaner: US Patent No. 5,991,714 (November 1999)

14. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: Detection of New daliCiode Using N-
grams Signatures. In: Proceedings of Second Annual Conference on Privacyy 8adufrust,
October 13-15, 2004 (2004)

15. Karim, M.E., Walenstein, A., Lakhotia, A.: Malware Phylogeny Generation usimgufations of
Code. Journal in Computer Virology (2005) McDaniel, Heydari, M.H.: Content Bake@iype
Detection Algorithms. In: 8 Annual Hawaii International Conference on System Sciences (HICSS'03)
(2003)

16. Goel, S.: Kolmogorov Complexity Estimates for Detection of Virusesipglexity Journal 9(2) (2003)

17. McDaniel, Heydari, M.H.: Content Based File Type Detection Algorithms.Hhn: 6t

19

Annual Hawaii International Conference on System Sciences (HICSS’03) (2003)

18. Noga, A.J.: A Visual Data Hash Method. Air Force Research report (O2béy

19. Natvig, K.: Sandboxll: Internet Norman SandBox Whitepaper (2002)

20. Willems, C., Freiling, F., Holz, T.: Toward Automated Dynamic Malware Aiglysing
CWSandbox. IEEE Security and Privacy Magazine 5(2), 32—39 (2007)

21. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: proceetlthgsW4SENIX 2005
Annual Technical Conference, pp. 41-46 (2005)

22. Reis, C., Dunagan, J., Wang, H.J., Dubrovsky, O., Esmeir, S.: BrowserShieldaVilitgeDriven
Filtering of Dynamic HTML. OSDI, Seattle, WA (2006)

23. K2. ADMmutate (2001) Available froimttp://www.ktwo.ca/security.html

24. Litterbox: http://www.wiul.org

25. K2. ADMmutate (2001) Available frofmitp://www.ktwo.ca/security.html

26. Detristan, T., Ulenspiegel, T., Malcom, Y., Underduk, M.: Polymorphic ShellEngme Using
Spectrum Analysis. Phrack (2003)

27. Kolesnikov, O., Lee, W.: Advanced Polymorphic Worms: Evading IDS by BlendingtirN@irmal
Traffic. USENIX Security Symposium, Georgia Tech: Vancouver, BC, Carzifs)

28. Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo, S.J.: On the InfagbiModeling
Polymorphic Shellcode for Signature Detection Tech. report cucs-00707, Columbéadity
(February 2007)

29. Kruegel C., Kirda E., Mutz D., Robertson W, and Vigna G.: Automating mimi@agkstusing static
binary analysis. Proceedings of the 14th conference on USENIX SecgmifyoSium

30. Wagner D. and Soto P. Mimicry attacks on host-based intrusion detectionssyteceedings of the
9th ACM conference on Computer and communications security, CCS 2002

31. Forrest S, Hofmeyr S, Somayaji A, and Longstaff T.: A sense of self for nagiegses. Proceedings
of the 1996 IEEE Symposium on Security and Privacy

32. Kruegel C., Mutz D., Valeur F., and Vigna G.: On the detection of anomaldemsyal arguments.
In Europeon Symposium on Research in Computer Security. October 2003

33. Tandon G. and Chan P.: Learning rules from system call arguments and sefguemasaly
detection. ICDM Workshop on Data Mining for Computer Security, 2003

34. Steganalysisttp://niels.xtdnet.nl/stego/

35 Autolt, Automate and Script Windows Task#p://www.autoitscript.com/autoit3/

36. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Quications of the
ACM 13(7), 422—-426 (1970)

37. Li W,, Stolfo S., Stavrou A., Androulaki E., and Keromytis A.: A Study of MalcodeiBg
Documents. DIMVA, 2007

38. Ferrie P.: Hidan and Dangerous. W32/Chiton (Hidan), Virus Bulletin, March 20@74pag

39. Process Monitohttp://technet.microsoft.com/en-us/sysinternals/bb896645.aspx

40. http://www.captcha.net/

41. Chellapilla K, Larson K., Simard P., and Czerwinski M.: Computers beat Hutmaimgjle Character

Recognition in Reading based Human Interaction Proofs (HiP&roceedings of CEAS'2005

42. Gaurav S. Kc Angelos D. Keromytis Vassilis Prevelakis: Counteagl@jection Attacks With
InstructionSet Randomization. Proceedings of the 10th ACM conference on Coammiiter
communications security

43. Barrantes E, Ackley D, and Forrest S.: Randomized Instruction Set Emubdii@nupt Binary Code
Injection Attacks. CCS, 2003

44 http://rep.oio.dk/Microsoft.com/officeschemas/Schemasintros.htm

45, http://vx.netlux.org/

20

