
J Comput Virol (2006) 2:135–147
DOI 10.1007/s11416-006-0024-y

ORIGINAL PAPER

Testing and evaluating virus detectors for handheld devices

Jose Andre Morales · Peter J. Clarke · Yi Deng ·
B. M. Golam Kibria

Received: 15 March 2006 / Accepted: 20 June 2006 / Published online: 2 September 2006
© Springer-Verlag France 2006

Abstract The widespread use of personal digital assis-
tants and smartphones gives securing these devices a
high priority. Yet little attention has been placed on
protecting handheld devices against viruses. Currently
available antivirus software for handhelds is few in
number. At this stage, the opportunity exists for the eval-
uation and improvement of current solutions. By pin-
pointing weaknesses in the current antivirus software,
improvements can be made to properly protect these
devices from a future tidal wave of viruses. This research
evaluates four currently available antivirus solutions for
handheld devices. A formal model of virus transfor-
mation that provides transformation traceability is pre-
sented. Two sets of ten tests each were administered;
nine tests from each set involved the modification of
source code of two known viruses for handheld devices.
The testing techniques used are well established in PC
testing; thus the focus of this research is solely on hand-
held devices. Statistical analysis of the test results show
high false negative production rates for the antivirus
software and an overall false negative production rate
of 47.5% with a 95% confidence interval between 36.6%

J. A. Morales (B) · P. J. Clarke · Y. Deng
School of Computing and Information Sciences,
Florida International University, University Park,
Miami, FL 33199, USA
e-mail: jmora009@cis.fiu.edu

P. J. Clarke
e-mail: clarkep@cis.fiu.edu

Y. Deng
e-mail: deng@cis.fiu.edu

B. M. G. Kibria
Department of Statistics, Florida International University,
University Park, Miami, FL 33199, USA
e-mail: kibriag@fiu.edu

and 58.4%. This high rate shows that current solutions
poorly identify modified versions of a virus. The virus is
left undetected and capable of spreading, infecting and
causing damage.

1 Introduction

On June 14, 2004, the first computer virus infecting hand-
held devices was identified [9]. The first virus to infect
handhelds1 running Windows Mobile operating system
was released July 17, 2004 [7]. This was the beginning of
a new era for the virus and antivirus community. At that
time there were little if any antivirus solutions available.
An overwhelming majority of users were vulnerable to
any possible viral attack. In a reactionary effort, security
companies released antivirus solutions for the infected
devices that only protected against these specific viruses.
Still today many handhelds do not have some form of
antivirus software installed.

This research evaluates current antivirus solutions for
handhelds with the objective of identifying problems in
their detection mechanisms. To achieve this objective we
introduce a formal model to represent virus transforma-
tions and use the model in the generation of test cases.
The work of Cohen [15] served as the inspiration for
the creation of this model. This model provides detailed
traceability of the transformations produced by a virus.
The transformed viruses can be precisely ordered by cre-
ation time and transformation type. The approach taken
was to create test cases that are modifications of two

1 Smartphones and personal digital assistants will be collectively
referred to as handheld devices or handhelds throughout this
paper.

136 J. A. Morales et al.

already identified viruses and load them into the hand-
held running the antivirus software. That is, we wanted
to test the detection accuracy of the antivirus software
against virus modifications. Specifically, the tests were
designed with the goal of producing false negatives,
which occur when an infected object is not detected as
infected, by the virus detectors. Testing virus detectors
for production of false negatives has been extensively
performed on PCs [12,24,27] and is well documented.
Therefore this research focuses only on testing handheld
devices. A high false negative production rate would
reveal virus detection weaknesses in the software. The
test environment consisted of a Pocket PC running
the Microsoft Windows Mobile operating system and
the antivirus software. The tested antivirus software
is specifically designed for this platform and currently
available to the public. At the time this research was
conducted there were only two known viruses for the
Pocket PC running Windows Mobile. In this research
both of these viruses were used for testing. This re-
search extends the research presented by Morales et. al.
in [3].

To our knowledge, this research is the first to evalu-
ate current antivirus solutions for the Windows Mobile
operating system and for handheld devices in general.
The flaws and problems discovered by this research can
help lay the foundation for future study and work in
virus detection for handheld devices. The results of this
work can be made public via vulnerability databases,
such as the National Vulnerability Database [25]. This
research also provides insight on the application of test-
ing methodologies to a new platform in the emerging
area of handheld devices. Currently there is no standard
set of test cases for virus detectors on this platform. Test-
ing related organizations like Eicar.com and av-test.org
also have not yet addressed this issue. The test cases
created here can be applied to the development of a
standardized set of test cases for this platform and these
devices.

In the next section we overview the terminology used
in the paper. Section 3 describes related work on test-
ing virus detectors. Section 4 describes a formal model
for virus transformation and the test categories used to
generate the test cases. Section 5 describes the tests we
performed and Sect. 6 our results. Some conclusion are
made in Sect. 7.

2 Computer viruses and handheld devices

A computer virus is defined as a program that can infect
other programs by modifying them to include a possi-
bly evolved version of itself [15]. Computer viruses have

become very sophisticated in detection avoidance, fast
spreading and causing damage. A highly populated tax-
onomy of viruses exists with each classification having
its own challenges for successful detection and removal
[12,27]. Today viruses are regarded as a real global
threat and viewed as a weapon usable by those bent on
creating large scale interruption of everyday life [10,34].

The problem of viral detection was studied by
Cohen which showed that detecting a virus is not decid-
able [15]. Many detection algorithms have been pre-
sented [26], each with its advantages and disadvantages.
Virus detection can be classified as one of two forms:
signature based and behavior based [12,27]. Signature
based detectors work by searching through objects for
a specific sequence of bytes that uniquely identify a
specific version of a virus. Behavior based detectors
identify an object as being viral or not by scrutiniz-
ing the execution behavior of a program [16]. Behavior
based detection is viewed by many including the au-
thors of this research as key to the future of virus detec-
tion [1,5,14] because of its ability to detect unknown
viruses.

The evolution of virus detectors has moved parallel
with the release of viruses in a reactionary manner [21].
As new viruses with new techniques were identified, an-
tivirus researchers rushed to include these new tactics in
their software [4,12,27]. This evolution has produced a
learning curve, with virus authors and antivirus research-
ers as both teacher and student. Antivirus companies
need to develop security solutions for handheld devices
that defend against the types of viruses seen in the past
without having to go through the same learning curve
for a second time.

A handheld device can be described as a pocket sized
device with computing capabilities. Two types of hand-
held devices are relevant to this paper: the personal
digital assistant, also called pda, and the smartphone.
A pda is used as a personal organizer that includes a
contact list, calendar of events, voice recorder, notes,
and more. A smartphone can be viewed as a cellular
phone integrated with a pda. Both of these types of
handhelds share some basic limitations such as: limited
screen size, variable battery life, small storage space,
operating system installed with limited resources and
reduced processing capabilities [17,18]. These limita-
tions may not allow for antivirus software to be as
powerful as those found in desktop PCs. Signature da-
tabases and detection functionalities are limited in size
and scope. This can possibly result in more viruses be-
ing able to easily spread and avoid detection in an envi-
ronment with weak security. Some handheld device
security issues have been previously addressed in
[11,28–31].

Testing and evaluating virus detectors for handheld devices 137

3 Related work

An earlier version of this research was presented by
Morales et. al. in [3]. We have extended that research by
adding a new set of test cases for a second virus for hand-
helds known as Brador [8]. In addition, formal statistical
analysis of the results was conducted providing rigorous
results and conclusions of the administered tests (see
Sect. 6).

In this paper we use a black-box approach to test the
antivirus solutions for handheld devices. Black-box test-
ing is an approach that generates test data solely from
the application’s specification [22]. Since the software
under test is proprietary, we employ the end-user view of
the software as our specification. This specification is the
detection of objects infected with a virus. There are sev-
eral techniques used to generate test cases based on the
specification of a software system [20]. Two of these tech-
niques are input space partitioning, and random testing
[20]. Partition testing uses domain analysis to partition
the input-output behavior space into sub domains such
that any two test points chosen in a sub domain gener-
ates the same output value [6]. Random testing involves
the selection of test points in the input space based on
some probability distribution over the input space [22].
To generate the input data for our test cases we used
a combination of input space partitioning and random
selection of test points. Due to the limited access to
the full specification of the antivirus software, we infor-
mally apply partition testing and random testing. We
intuitively apply these techniques using the results of
previous studies in testing antivirus software.

The research presented here is motivated by the work
done by Christodorescu and Jha [24]. Their research
proposed methods of testing malware detectors based
on program obfuscation [12,27]. They used previously
identified viruses to test the resilience of commercially
available antivirus software for PCs. Christodorescu and
Jha address two questions in their work: (1) the resis-
tance of malware detectors to obfuscations of known
malware; (2) can a virus author identify the algorithm
used in a malware detector based on obfuscations of
the malware. The approach they used to answer these
questions involved: the generation of test cases using
program obfuscation, the development of a signature
extraction algorithm, and the application of their meth-
odology to three commercial virus scanners. Filiol pre-
sented more rigorous work on signature extraction algo-
rithms and prevention in [13]. The results of Christodo-
rescu and Jha’s work indicated that the commercial virus
scanners available for PCs are not resilient to common
obfuscation transformations. We use a similar approach
to test the virus detection ability for handheld devices.

Unlike the work by Christodorescu and Jha [24], we are
limited by the number of viruses available for handheld
devices. This limitation is based on the fact that virus
authors have just only started to write viruses targeting
handheld devices. Our experiments use similar transfor-
mations on the source code of the malware to generate
test cases.

Marx [2] presents a comprehensive set of guidelines
for testing anti-malware software in the “real world”.
Marx claims that many of the approaches used to test
anti-malware software in research do not translate into
appropriate testing strategies for small business and
home office use. He further states that the focus of test-
ing for the real world should be to create tests that are
as exact as possible. That is, tests that focuses on on-
demand, on-access, disinfection and false positive test-
ing of the anti-malware software products. Although his
article is targeted for data security managers and pro-
fessional testers, he outlines procedures that should be
taken when performing anti-virus software testing in any
environment. The work done by Marx [2] was used as
a reference guideline for this research. Other relevant
research on the subject of testing virus detectors can be
found in [32,33].

4 Testing and evaluation

In this section we present a formal model for the trans-
formation of viruses and show how this model is used to
generate the test cases for our study. A characterization
of the transformation stage that a virus enters when exe-
cuting is given. Detection of a transformed virus, viral
infection and the production of false negatives and false
positves are also characterized. Descriptions of each of
the five test categories are also given.

4.1 Formal model of virus transformation

As stated in Sect. 2, a computer virus is defined as a pro-
gram that can infect other programs by modifying them
to include a possibly evolved version of itself [15]. A
virus v ∈ V where V is the set of all possible viruses, en-
ters during its execution a transformation stage R where
one or more possibly evolved versions of v written v′,
are produced and written to some location, expressed
in Eq. (1). Successful transformation occurs when v′
has preserved the original intended execution behavior
XB() of v, expressed in Eq. (2).

Ri(pj, v, s) ≡ pij(v, s) = v′ (1)

In Eq. (1), Ri is the currently running transformation
instance. A specific type of transformation is denoted as

138 J. A. Morales et al.

p ∈ P where P = {T, H, B, L, C}, for example B means
substitution (see Sect. 4.2 for descriptions of these val-
ues). The number of transformations that have occurred
are in i, the current value of i is the ith transformation
to have taken place. The variable j holds the value rep-
resenting the number of times, jth occurrence, a specific
transformation type p has occurred, p = H and j = 3
means that the transformation type H has been used
in 3 transformations up to this point. The virus to be
transformed is denoteted by v. The element s provides p
the details for a specific transformation. For example if
p = B then s may contain the line numbers to substitute
and the new lines to use for substitution (see Sect. 4.2 for
details of s for each transformation type). The element
s can be characterized as a data structure composed
of two types of attributes: (1). an association attribute
and (2). transformation detail attributes. The association
attribute is a single attribute that defines the transfor-
mation instance and test category pij that s is associated
with. The transformation detail attributes consist of one
or more attributes that specify the details needed for
the specified transformation to execute successfully as
described in the above example. The transformed ver-
sion of v is denoted by v′. When Ri occurs, the operation
is always independent from every other occurrence of
R. The virus v used as input by R is always the same; it is
the virus currently executing that invokes R. The output
of R, written v′, is always a possible evolution of v. The
number of v′s that is produced is equal to the value of i.
In each occurrence of R, the only input that may change
is the information held in the attributes in s. Thus the
output v′ of two occurrences of R may be the same if the
attributes of s was unchanged in both operations and the
same transformation type p was used. The attribute of
s defining the transformation instance and test category
pij will be different for each occurrence of R.

If (XB(v′) = XB(v)) Then Ri(pj, v, s) = Success

Else Ri(pj, v, s) = Failure (2)

The transformed virus v′ can equivalently be written
as vijk where k is the symbol for the transformation type
used in a specific transformation Ri. The variable k is
added to differentiate the value of j for each transfor-
mation type p. This is necessary to illustrate that there
are multiple instances of j, one for each transformation
type p that is used. Each j has its own value represent-
ing the j number of times p has been used. Therefore, if
j = 2 and k = C, we know that this is the second time
compression is used. Consider the following example:
assume virus v has finished one execution of itself. Dur-
ing this execution five transformations occurred. The
transformation types used were: 1 substitution of source

code, 2 compressions, 1 insertion of trash source code
and 1 label renaming. Applying the notation in Eq. (1)
to this example, we produce the results shown in Eq. (3).

R1(B1, v, s) ≡ B11(v, s) = v′
11B

R2(C1, v, s) ≡ C21(v, s) = v′
21C

R3(C2, v, s) ≡ C32(v, s) = v′
32C

R4(H1, v, s) ≡ H41(v, s) = v′
41H

R5(L1, v, s) ≡ L51(v, s) = v′
51L

(3)

We can see from Eq. (3) that placing the outputs v′
in order of creation is simple. The notation facilitates
identifying each virus v′ by order of creation and input
transformation type. Note that virus v21C and v32C may
have been transformed the same or differently from one
another. This is, as previously noted, dependent on the
information held in the attributes of s.

A virus detector written D, is a software program
meant to detect and remove viruses before infecting
a computer system [15]. When detection is complete
only one of two outcomes can result. The detection was
successful or there was a failure. A successful detec-
tion implies the correct identification of a virus infected
object Ov. This implies that infection, expressed I, of the
object O with a virus v is true. That is, the sequence of
bits representing v is contained within the sequence of
bits representing O. Thus v becomes a subsequence of
O. The object could be a file, an address in memory, or
some other information stored in a computer system. All
objects O are assumed non-viral before detection starts.
Notation for virus infection and detection is presented
in Eq. (4).

I(O) = True iff v is a subsequence of O

If D(O) = Success then I(O)
(4)

A failed detection produces one of two outcomes: a
false positive, FP, or a false negative, FN. A false positive
occurs when a non viral object is detected as being viral.
A false negative occurs when a virus infected object is
not detected as being viral. A small amount of false pos-
itives is tolerable, but false negatives must be avoided
always. This is formalized in Eq. (5).

If D(O) = FP then D(O) ∧ ¬I(O)

If D(Ov) = FN then ¬D(O) ∧ I(O)
(5)

Note in Eq. (5) the assumption is made in the case of
D(Ov) = FN that the object is already infected with a
virus thus justifying the use of the symbol Ov.

Testing and evaluating virus detectors for handheld devices 139

4.2 Test categories

The test cases generated, using a non-strict approach
to input space partitioning and random testing, can be
classified in five categories. These are transposition of
source code, insertion of trash source code, substitution
of source code, label renaming and compression of the
virus executable. These categories were chosen due to
the facilitation each one gives virus detectors to produce
a false negative [24]. These categories are also charac-
teristic of polymorphism [4,12,27] and metamorphism
[27], powerful techniques used by virus authors. Test
case implementations of each category are presented in
Sect. 5.

4.2.1 Transposition of source code

Transposition is the rearrangement of statements in the
source code. This makes the virus look differently by
reorganizing its physical appearance. It still preserves
the original intended execution behavior. Transposition
can be done randomly or in specific areas. The whole
body of the source code or only pieces of it can be trans-
posed as long as the original intended execution behav-
ior is preserved. Applying Eq. (1) to this category pro-
duces the Eq. (6)

Ri(Tj, v, s) ≡ Tij(v, s) = v′
ijT (6)

where p = T indicates transposition and the transfor-
mation detail attributes of s specify the line numbers of
the source code to transpose. Transposition can result in
changing the area of source code that is used as the sig-
nature by virus detectors. This is a result of a change in
the byte sequence of the executable version of the virus.
The transposition can also result in an increase in the
byte size of the virus executable. This is due to the addi-
tion of commands that preserve the original intended
execution behavior. These changes make transposition
of source code a possible cause of a virus detector pro-
ducing a false negative.

4.2.2 Insertion of trash source code

This category inserts new code into the original source
code. This new code consists of instructions that do noth-
ing to change, alter or affect the intended behavior of the
original source code. It does, in some cases, change the
byte size of the executable version of the virus. By chang-
ing the byte size of the executable, some virus detectors
may produce a false negative more easily. This occurs in
the case where the detector uses the length of the entire
virus as part of the detection process. Thus a change in
this length could result in the detector misreading the

virus. What the newly inserted code does is inconsequen-
tial as long as it does not change the intended behavior
of the original source code. Using Eq. (1), trash source
code insertion is expressed in Eq. (7)

Ri(Hj, v, s) ≡ Hij(v, s) = v′
ijH (7)

where p = H denotes trash insertion. The transforma-
tion detail attributes of s store the trash code to be in-
serted and specify source code locations of where to
insert them.

4.2.3 Substitution of source code

The removal of lines of source code is replaced with
different lines of code. The lines of code used for replace-
ment are not copied from other areas of the code body.
The replacement lines can be the same size as the orig-
inal. They can also be deliberately shortened or length-
ened. This is done to manipulate the overall byte size of
the virus executable. The lines that are to be replaced
cannot be in an area that can disrupt the original in-
tended execution behavior. This implies that this process
cannot be random. Careful selection of lines to replace
can assure preservation of execution behavior. Applying
Eq. (1) produces Eq. (8).

Rj(Bj, v, s) ≡ Bij(v, s) = v′
ijB (8)

p = B specifies substitution and the transformation de-
tail attributes of s specify which lines to replace and also
has stored the lines to replace them with. A virus detec-
tor can produce a false negative under this category for
one of two possible reasons. First, the substituted lines
can change the source code used as a signature by the
detector for a given virus. Second, as discussed before, if
the byte size is not preserved it could cause the detector
to identify it as benign. This occurs in cases where the
length of the virus is used in detection.

4.2.4 Label renaming

This category involves the substitution of label names
in the source code for new names. A label is synony-
mous with a procedure or function name in a high level
language. The label is a pointer to an address space
where the instructions to be executed are located. A
label therefore points to a set of instructions that are
always executed when the label is referenced. The new
labels can be kept the same byte size as the original one
and also can be purposely changed to a different size. In
addition, the corresponding calls to these labels must be
updated to ensure original intended execution behavior.
The label names chosen for substitution should be those
that reference blocks of instructions essential to the virus

140 J. A. Morales et al.

execution such as: finding a file to infect, opening a file
for infection and infecting the file. A virus detector can
produce a false negative in this category only when a
signature includes a label or a call to a label that has
been modified. If no labels are included in the virus sig-
nature and the length of the entire virus is not used for
detection, the possibility of a false negative production
is greatly reduced. This category is expressed in Eq. (9)
by applying Eq. (1).

Ri(Lj, v, s) ≡ Lij(v, s) = v′
ijL (9)

where p = L signifies label renaming and transforma-
tion detail attributes of s store a list of the label names
to replace and the new names to replace them with.

4.2.5 Compression of a virus executable

This category is the compression of the original virus
executable. Compression is done by a commercial prod-
uct or private software belonging to the virus author. The
original intended execution behavior is fully preserved.
When a virus transforms it can evolve into a new version
of itself that is self compressed. This new version makes
no modifications to alter the execution as it is originally
intended. Virus detectors can produce a false negative
under this category by failing to match the virus signa-
ture. The compression may create a new byte sequence
in achieving an overall byte size reduction. This in turn
may cause the source code used for the virus signature
to be completely modified and thus detection is almost
impossible. Virus compression is expressed in Eq. (10)
using Eq. (1).

Ri(Cj, v, s) ≡ Cij(v, s) = v′
ijC (10)

p = C represents compression and transformation detail
attributes of s store the file name for the compressed
version.

5 Test implementation

As of the writing of this paper there were only two
known viruses for the Windows Mobile platform:
WinCE. Duts.A and Backdoor.Brador.A [7,8]. Test were
conducted on both of these two viruses. The source code
for both of these is readily available to the public [7,8].
The Duts virus consists of 531 lines of source code. This
virus was created as a proof of concept code by virus
author Ratter formerly of the virus writers group 29A.
The Brador virus consists of 602 lines of source code.
This virus was detected in the wild and classified as a Tro-
jan horse. Both of these expose some of the
vulnerabilities already present in the Windows Mobile

operating system. They are written in the ARM
processor assembly language.

5.1 Testing environment

Four commercially available antivirus products for
handheld devices were tested: Norton, Avast!, Kasper-
sky, and Airscanner.com. The handheld device used for
testing was a Toshiba 2032SP Pocket PC running Win-
dows Mobile 2002 (version 3.0.11171, build 11178) with
full phone functionality provided by Sprint PCS. The
central processing unit is the ARM processor SA1110.
The Operating System of the PC used was Windows
XP service pack 2. Before administering the test cases a
control test was given. The original two viruses were
tested for detection to assure each antivirus product
properly identified it. Each of the two sets of ten test
cases were allowed to fully execute to assure that infection
of the system was occurring. Thus showing the original
intended execution behavior of the virus had been pre-
served after modifications were made. On administering
the control test of the Brador virus, Kaspersky failed
to detect it. This was the only failed control test that
was encountered. In spite of this Kaspersky was kept in
the final results and used in the statistical analysis (see
Sect. 6).

5.2 Description of test cases

The test cases were introduced to the handheld device
via the synchronization functionality from a PC. The ver-
sion used here was Microsoft ActiveSync version 3.7.1
build 4034. The antivirus software performed a com-
plete virus scan with every test. Before testing com-
menced the antivirus software was checked for updates
from the software company’s website including the latest
virus signature database. Relevant segments of code for
several test cases are also provided.

5.2.1 Transposition of source code

Test case 1.1 We chose a set of blocks of source code
and inserted labels to each of the blocks. The area of the
source code chosen for this is the area where the actual
file infection takes place, thus assuring probable execu-
tion of the transposed source code. Then with the use of
branch statements each labeled block branched to the
next block in the set thus preserving the original execu-
tion order. As a final step, all the blocks were rearranged
and taken out of its original physical order. Example 1
is an implementation of this starting at line 308 of the
Duts virus source code.

Testing and evaluating virus detectors for handheld devices 141

1. Example of test case 1.1
Original source Code Modified source code

ldr r8, [r0, #0xc]
add r3, r3, r8
str r3, [r4, #0x28]

sub r6, r6, r3
sub r6, r6, #8

mov r10, r0
ldr r0, [r10, #0x10]
add r0, r0, r7
ldr r1, [r4, #0x3c]
bl _align_

section19
ldr r8, [r0, #0xc]
add r3, r3, r8
str r3, [r4, #0x28]
bl section20

section21
mov r10, r0
ldr r0, [r10, #0x10]
add r0, r0, r7
ldr r1, [r4, #0x3c]
bl _align_
bl section22

section20
sub r6, r6, r3
sub r6, r6, #8
bl section21

Test case 1.2 This involved manipulation of values
held in various registers at a given moment during the
execution. In assembly language, registers are used
extensively to hold values and addresses. The manipu-
lation of these values was done via addition and/or sub-
traction of a value in a particular register. Moving the
value to other registers was also used. The result was an
extended piece of source code that took a value, modi-
fied it via 2 to 5 instructions and finished by placing back
the original value in the original register. This transfor-
mation preserved the execution order of the virus and
the intended values held in the registers at a given instant
in execution. Example 2 is an implementation starting
at line 71 of the Brador virus source code.

2. Example of test case 1.2
Original source code Modified source code

add R1, R1, R6
add R6, R6, #0x1000

add R1, R1, R6
add R1, R1, #4
add R1, R1, #6
sub R1, R1, #10
sub R1, R1, #10
add R6, R6, #8
add R6, R6, #4
sub R6, R6, #12
add R6, R6, #0x1000

5.2.2 Insertion of trash source code

Test case 2.1 This involved a copy of an original single
line of code. The line was pasted back into the source
code immediately following the original one. This did
not change the behavior because the line of source code
chosen consists of the instruction DCB which defines a
byte with a string value. This insertion only increased
the byte size of the file by the size of the line of code.

Test case 2.2 In this test, the same instruction as in test
case 2.1 was inserted right after five lines of source code.
The five lines were not in successive order and deliber-
ately chosen to cover the whole body of the source code.
Each chosen line represented an essential part of the
execution sequence such as: finding a file to infect and
reading the stack pointer. The insertion did not affect
the intended execution of the code and increased the
files byte size by length of the insert line multiplied by
five. Example 3 shows the implementation of this test
case in the source code of the Brador virus.

3. Example of test case 2.2

DCB "Just Looking"

Inserted after each of the following lines

Line 57 ldr R4, =FILE_ATTRIBUTE_NORMAL
Line 119 ldr R0, =hostname
Line 198 ldr R1, =FIONBIO
Line 387 ldr R0, victims_socket
Line 436 str R3, [SP, #8]

5.2.3 Substitution of source code

Test case 3.1 Here we do a replacement of line 514
of the Duts virus source code as shown in example 4.
The substitution preserved the length of the original
line while making a modification to a subsection of it.
This was done to make a modification that did not affect
the byte size of the virus. This substitution did not affect
the intended execution of the virus. Finally, it is worth
noting that the format of the two lines is indeed identical
with respect to spaces and character alignments.

4. Example of Test case 3.1

DCB "This is proof of concept code.
Also, i wanted to make avers happy."

Replaced with

DCB "This is foorp fo tpecnoc code.
Also, i wanted to make avers happy."

Test case 3.2 This test is similar to test case 3.1. We
replaced the same line 514 of the virus source code with
an almost identical one. This new line also had a mod-
ification to a subsection of it. The modification was not
the same as that of the first test. This modification made
the length of the line smaller than the original and thus
also decreased the overall byte size. Also the character
and space alignment was not preserved. Example 5 is

142 J. A. Morales et al.

the performed line substitution in the Duts virus source
code:

5. Example of test case 3.2

DCB "This is proof of concept code.
Also, i wanted to make avers happy."

Replaced with

DCB "This is poc code.
Also, i wanted to make avers happy."

Test case 3.3 Here we again substituted line 514 of
the virus source code with a new one. The new line of
code was maximally modified while still preserving the
ability to assemble the source code. The line used for
replacement was the same length as the original line but
space and character alignment were purposely not pre-
served. Example 6 is the actual substitution in the Duts
virus source code.

6. Example of test case 3.3

DCB "This is proof of concept code.
Also, i wanted to make avers happy."

Replaced with

DCB "dkfjvd dkfje dkfdsfg kd934,
d kdick 3949rie jdkckdke 345r dlie4 vhg."

5.2.4 Label renaming

The labels that were used for substitution were pur-
posely kept the same byte size and also made differ-
ent sizes in the tests. Also the corresponding calls or
branches to these labels were also modified to ensure
original execution behavior. The label names chosen for
substitution referenced blocks of instructions essential
to the virus execution such as: finding a file to infect,
opening a file for infection and infecting the file.

Test case 4.1 This test was a simple reversal of four
label names found throughout the source code. The byte
size was preserved. Also character alignment was pre-
served. Two of the labels, appearing in lines 79 and 397
of the Duts virus source code were renamed as shown
in example 7.

7. Example of test case 4.1
Line Original Modified

number source code source code
79 find_next_file next_file_find

397 open_file file_open

Test case 4.2 In this test, the label names were pur-
posely made longer thus increasing the byte size. In this
test the character and space alignment were not pre-
served. Two of these labels, located at lines 79 and 482
of the Duts virus source code were renamed as shown
in example 8.

8. Example of test case 4.2
Line Original Modified

number source Code source code
79 find_next_file next_file_to_find_for_use
482 ask_user user_ask_question_to_continue

5.2.5 Compression of a virus executable

Test case 5.1 Compression of the virus executable was
done by compressing the executable version of the orig-
inal virus using commercially available software. The
software PocketRAR [36] was chosen for this task. This
choice was made based on the experience of using the
software and there is a version available for Windows
Mobile. The compressed file was placed in the hand-
held device and opened to view its contents. Then the
virus scan was performed. This was done to find out if
the antivirus software would not only detect the virus
in compressed form but also delete it or at a minimum
keep it from executing.

6 Test results

Table 1 shows results of applying the tests described in
Sect. 5.2 with the Duts virus. Table 2 shows results of
applying the tests with the Brador virus. Column 1 is the
test categories. Column 2 is the individual tests in the
order described in Sect. 5. Columns 3 through 6 contain
the individual test results for the antivirus software used
in the test executions. The last row shows the false neg-
ative production rate of each of the software tested. A
value of 0 represents detection failure, thus the virus was
not detected and deleted and was still capable of exe-
cution. A value of 1 represents detection success and
deletion of the infected file. A value of 2 denotes suc-
cessful detection but not deletion, this value was added
for the special case of compression. Note that a value of
0 is a false negative.

6.1 Inference analysis

Table 1 shows that Norton had the highest false neg-
ative production rate while the Avast! had the lowest
for the Duts virus. Table 2 shows Kaspersky had the

Testing and evaluating virus detectors for handheld devices 143

Table 1 Virus scanner test results and false negative production
by software for Duts virus

Norton Avast! Kaspersky Airscanner.com

Original virus 1 1 1 1
Transposition

Test 1.1 0 1 0 0
Test 1.2 0 1 1 0

Trash insertion
Test 2.1 0 1 1 1
Test 2.2 0 0 0 0

Substitution
Test 3.1 1 1 1 1
Test 3.2 0 1 1 1
Test 3.3 1 1 0 0

Label renaming
Test 4.1 1 1 1 1
Test 4.2 1 1 1 1

Compression
Test 5.1 2 2 2 2

False negative % 60 20 40 50

highest false negative production rate while Airscan-
ner.com had the lowest for the Brador virus. If Kas-
persky were to be disqualified due to failing the con-
trol test than Norton would have the highest false neg-
ative rate. We have opted to keep Kaspersky in the
analysis to see the test results. Not including scanning
the original virus, a total number of 80 tests were per-
formed. Of these, 42 tests were successful detections,
leaving 38 as failures. This is an overall 47.5% false
negative production rate which is very high and
unacceptable.

In the test for compression of source code, a special
note should be taken regarding the behavior of the virus.
The compression software apparently creates a tempo-
rary copy of the contents of a compressed file when the

Table 2 Virus scanner test results and false negative production
by software for Brador virus

Norton Avast! Kaspersky Airscanner.com

Original virus 1 1 0 1
Transposition

Test 1.1 0 0 0 1
Test 1.2 0 0 0 1

Trash insertion
Test 2.1 0 1 0 1
Test 2.2 0 0 0 1

Substitution
Test 3.1 1 1 0 1
Test 3.2 0 1 0 1
Test 3.3 1 1 0 1

Label renaming
Test 4.1 1 1 0 1
Test 4.2 1 1 0 1

Compression
Test 5.1 2 2 0 2

False negative % 60 40 100 10

files are viewed. The virus scanner detects and deletes
this temporary copy, however, the original virus file can
still be executed from within the compressed file view.
Thus the compression software does not allow the an-
tivirus to delete the contents of a compressed file. We
count this as a failure because the virus is still in the
handheld device, even though it was detected, and can
still be executed.

Table 3 shows cumulative false negative production
rates for all the administered tests on both viruses. Col-
umns 1 and 2 are similar to Table 1, Columns 3 and 4
shows successful and failed detections, and Columns 5
and 6 show false negative production rates by individ-
ual test and test category. Compression had the highest
false negative production rate followed by transposition
of source code and insertion of trash source code. In
the individual test results, test 2.2 caused almost all the
antivirus software to produced false negatives. Yet test
2.1 caused a comparably smaller false negative produc-
tion amount. This shows the insertion of trash source
code within actual lines of instruction code is enough
to cause the detector to incorrectly identify the file as
viral. The transposition test category, the first test pro-
duced the most false negatives. The insertion of branch
statements in the source code results in a different phys-
ical appearance while maintaining the same execution
behavior proved to be very effective in avoiding detec-
tion.

In the substitution of source code category the false
negative produced in test 3.2 hints that a slight decrease
in the byte size of the virus executable may cause the
virus to go undetected. In test 3.3 , we purposely made
space and character alignments different than the orig-

Table 3 Cumulative false negative production by individual test
and category for both viruses

Successful Failed Per test Test
detection detection False category

negative % False
negative %

Transposition
Test 1.1 2 6 75% 68.75
Test 1.2 3 5 62.50

Trash Insertion
Test 2.1 5 3 37.50 62.50
Test 2.2 1 7 87.50

Substitution
Test 3.1 7 1 12.50 29.17
Test 3.2 5 3 37.50
Test 3.3 5 3 37.50

Label Renaming
Test 4.1 7 1 12.50 12.50
Test 4.2 7 1 12.50

Compression
Test 5.1 0 8 100 100

144 J. A. Morales et al.

inal line of source code while keeping the byte size the
same which caused the same amount of false negative
production to occur as in test 3.2. In the label renaming
category preserving and purposely changing the byte
size of the labels did not affect the virus detectors. This
implies that changing the byte size may have the affect
of avoiding detection if the byte size reduction is done in
certain areas of the source code. Also one can infer that
labels may not be used by the virus signatures. When a
byte size reduction causes a false negative production,
the modified area might be of critical importance to the
detector deciding if the code is viral or not.

6.2 Statistical analysis

This section presents a formal statistical analysis of the
results presented in Tables 1,2 and 3. Computer software
STATA 9.0 [35] was used to analyze the data. For testing
about the proportions we refer Zar [19] and Scheaffer
and McClave [23] among others. The analysis performed
were: (1) false negative production for the test results
of each virus and overall; (2) false negative pairwise test
between the tested software for each virus and overall;
(3) false negative pairwise test between test categories.
Confidence intervals were established for all the per-
formed statistical analysis.

6.2.1 False negative production analysis

1. Analysis of the complete data set for Duts and Bra-
dor (80 observations) The 95% confidence interval for
the proportion of overall false negative production is
between 0.366 to 0.584. We have tested the following
hypotheses. From both the confidence interval and tests
in Table A, we may conclude that the overall proportion
of false negative production is about 50%.

Table A Analysis for overall data set (80)

H0 < �= >

0.30 0.9997 0.0006 0.0003
0.40 0.9145 0.1709 0.0855
0.50 0.3274 0.6547 0.6726
0.60 0.0112 0.0225 0.9888
0.70 0.0000 0.0000 1.0000

2. Analysis for the Duts data set (40) The 95% confi-
dence interval for the proportion of false negative pro-
duction is between 0.272 to 0.578. This interval and the
tests in Table B support that the proportion of false neg-
ative production is about 50%.

Table B Analysis for the Duts data set (40)

H0 < �= >

0.30 0.9578 0.0845 0.0422
0.40 0.6266 0.7469 0.3734
0.50 0.1714 0.3428 0.8086
0.60 0.0119 0.0239 0.9881
0.70 0.0001 0.0001 0.9999

3. Analysis for the Brador data set (40) The 95% con-
fidence interval for the proportion of false negative pro-
duction is between 0.370 to 0.680. This interval and the
tests in Table C support that the proportion of false neg-
ative production is about 50%.

Table C Analysis for the Brador data set (40)

H0 < �= >

0.30 0.9990 0.0019 0.0010
0.40 0.9467 0.1066 0.0533
0.50 0.6241 0.7518 0.3759
0.60 0.1665 0.3329 0.8335
0.70 0.0079 0.0157 0.9921

Comparing the results in Tables A though C, it is clear
that the proportion of false negative production with the
Brador virus is higher than the proportion of false neg-
ative production with the Duts virus. This is because
Kaspersky had the highest proportion of false negative
production in comparison to the other software for the
Brador virus.

6.2.2 False negative pairwise Analysis by software

1. Pairwise comparison between softwares for both
Duts and Brador (n=20) The estimated proportion of
false negative production along with their correspond-
ing confidence intervals are given in Table D. From Ta-
ble D it can be observed that both Avast! and Airs-
canner.com have the same proportion of false negative
production and this amount is lower than both Norton
and Kaspersky. Kaspersky performed the worst.

Table D Proportion of false negative production for both viruses
(20)

Variable Proportion Confidence Interval

Norton 0.60 (0.385, 0.814)
Avast! 0.30 (0.099, 0.501)
Kaspersky 0.70 (0.499, 0.901)
Airscanner.com 0.30 (0.099, 0.500)

From Table E we observe that statistically there is
no difference between the proportion of false negative

Testing and evaluating virus detectors for handheld devices 145

Table E False negative pairwise test, confidence intervals by software (both viruses) (n=20)

P-value Confidence Interval

H0 : P1 − P2 = 0 P1 − P2 < 0 P1 − P2 �= 0 P1 − P2 > 0

Norton and Avast! 0.9717 0.0565 0.0283 (0.0060, 0.5940)
Norton and Kaspersky 0.2537 0.5073 0.7463 (−0.3940, 0.1940)
Norton and Airscanner.com 0.9717 0.0565 0.0283 (0.0060, 0.5940)
Avast! and Kaspersky 0.0057 0.0114 0.9943 (−0.6840, −0.1160)
Avast! and Airscanner.com 0.5000 1.0000 0.5000 (−0.2840, 0.2840)
Kaspersky and Airscannner.com 0.9943 0.0114 0.0057 (0.1150, 0.6840)

Table F Proportion of false negative production for Duts virus
(10)

Variable Proportion Confidence Interval

Norton 0.60 (0.262, 0.878)
Avast! 0.20 (0.052, 0.556)
Kaspersky 0.40 (0.122, 0.738)
Airscanner.com 0.50 (0.187, 0.813)

production by Norton and Kaspersky and Avast! and
Airscanner.com. It also confirms that both Avast! and
Airscanner.com have the lowest proportion of false neg-
ative production in comparison to the others.

2. Analysis of Duts data (10 observations) The esti-
mated proportion of false negative production along
with their corresponding confidence interval are given in
Table F. From Table G we may conclude that statistically
there is no differences among the software except be-
tween Norton and Avast!. It also indicates that Avast!
produced the lowest proportion of false negative pro-
duction in comparison to the others.

3. Analysis of Brador data (10 observations) The esti-
mated proportion of false negative production along
with their corresponding confidence interval are given
in the Table H. From table I we may conclude that statis-
tically there is no any difference between the proportion
of false negative production by Norton and Avast! and
Kaspersky and Airscanner.com. It is noted that Airs-
canner.com has the lowest proportion of false negative
production followed by Avast! and Norton. However,
Avast! gives the lowest proportion of false negative pro-
duction for Duts data.

Table H Proportion of false negative production for Brador virus
(10)

Variable Proportion Confidence Interval

Norton 0.60 (0.262, 0.878)
Avast! 0.40 (0.122, 0.738)
Kaspersky 1.00 (0.692, 1.000)
Airscanner.com 0.10 (0.003, 0.445)

6.2.3 Analysis by individual categories

From Tables J and K we can conclude with 95%
confident that the Label Renaming produced the
lowest false negative production rate followed by
substitution, Trash Insertion, Transposition and
Compression. Thus both label and substitution might
be considered for successfully detecting the
virus.

Overall the data showed high false negative produc-
tion rates for the tested antivirus software. The over-
all false negative production rate is about 47.5% with
95% confidence limits between 36.6% and 58.4%. That
means, we are 95% confident that there is at least 37%
and at most 58% of false negatives that can be produced.
We observed that both Avast! and Airscanner.com pro-
vided the lowest proportion of false negative production
among the tested software. However, their proportion
of false negative production can go up as high as 50%.
For the Duts virus, Avast! produced the lowest rate of
false negative production and Airscanner.com produced
the lowest rate for Brador. Among the categories, both
Substitution and Label Renaming provided the lowest

Table G False negative pairwise test, confidence intervals by software comparison (Duts)

P-value Confidence Interval

H0 : P1 − P2 = 0 P1 − P2 < 0 P1 − P2 �= 0 P1 − P2 > 0

Norton and Avast! 0.9661 0.0679 0.0339 (0.0080, 0.7920)
Norton and Kaspersky 0.8145 0.3711 0.1855 (−0.2294, 0.6294)
Norton and Airscanner.com 0.6735 0.6531 0.3265 (−0.3339, 0.5339)
Avast! and Kaspersky 0.1646 0.3291 0.8354 (−0.5920, 0.1920)
Avast! and Airscanner.com 0.0798 0.1596 0.9202 (−0.6969, 0.0969)
Kaspersky and Airscanner.com 0.3265 0.6531 0.6735 (−0.5339, 0.3339)

146 J. A. Morales et al.

Table I False negative pairwise test, confidence intervals by software comparison (Brador)

P-value Confidence Interval

H0 : P1 − P2 = 0 P1 − P2 < 0 P1 − P2 �= 0 P1 − P2 > 0

Norton and Avast! 0.8145 0.3711 0.1855 (−0.2294, 0.6294)
Norton and Kaspersky 0.0127 0.0253 0.9873 (−0.7035, −0.0964)
Norton and Airscanner.com 0.9905 0.0191 0.0095 (0.1440, 0.8560)
Avast! and Kaspersky 0.0017 0.0034 0.9983 (−0.9036, −0.2964)
Avast! and Airscanner.com 0.9393 0.1213 0.0607 (−0.0560, 0.6560)
Kaspersky and Airscanner.com 1.0000 0.0001 0.0000 (0.7140, 1.0859)

Table J Proportion of false
negative production for
individual test categories

Variable Proportion Confidence Interval

Transposition 0.6875 (0.4134, 0.8898)
Trash Insertion 0.6250 (0.3543, 0.8480)
Substitution 0.2917 (0.1262, 0.5109)
Label Renaming 0.125 (0.0155, 0.3835)
Compression 1.000 (0.6306, 1.0000)

Table K False negative pair wise test and corresponding confidence interval for category

P-value Confidence Interval

H0 : P1 − P2 = 0 P1 − P2 < 0 P1 − P2 �= 0 P1 − P2 > 0

Transposition and trash insertion 0.6451 0.7097 0.3549 (−0.2659, 0.3909)
Transposition and substitution 0.9932 0.0137 0.0068 (0.1049, 0.6868)
Transposition and label 0.9994 0.0012 0.0006 (0.2834, 0.8415)
Transposition and compression 0.0378 0.0756 0.9622 (-0.5396, -0.0854)
Trash Insertion and substitution 0.9817 0.0367 0.0183 (0.0344, 0.6322)
Trash Insertion and label 0.9983 0.0035 0.0017 (0.2127, 0.7873)
Trash Insertion and compression 0.0228 0.0455 0.9772 (-0.6122, -0.1377)
Substitution and label 0.8910 0.2162 0.1081 (-0.0770, 0.4102)
Substitution and compression 0.0003 0.0005 0.9997 (-0.8902, -0.5265)
Label and compression 0.0000 0.0000 1.0000 (-1.0370, -0.7130)

proportion of false negative production. During the test
case creation, we were not aware if the signature used by
a detector was modified. Many of the successful detec-
tions could have occurred because the transformation
did not affect the virus signature. Overall, with a 47.5%
false negative production rate, there is clearly room for
improvement.

7 Conclusion

We have presented a technique of testing handhelds
based on a formal model of virus transformation. The
results show multiple flaws in current virus detectors
for handheld devices. The statistical analysis of the test
results produced high false negative rates for each anti-
virus product and an extremely high overall false nega-
tive production rate of 47.5% with with 95% confidence
limits between 36.6% and 58.4%. These results suggest
that current virus detectors are purely simple signature

based detection. The formal model shows how detailed
traceability of the virus transformations can be done.
Future work includes the detailed study of false neg-
ative productions in any of the given tests. Byte size
changes, substitution and transposition of source code
and compression require further study to improve virus
detection under these conditions. Currently we have
a great archive of knowledge of viruses for PCs. This
information can be used to produce sophisticated virus
scanners for handheld devices given their limitations.
Ideally, this will occur expeditiously and preemptively
to help avoid infections of future viruses for handheld
devices.

Acknowledgments This was supported in part by the National
Science Foundation under Grant No. HRD-0317692. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies or endorsements either expressed or implied by the above
agencies. The authors thank Gonzalo Argote-Garcia and Konst-
antin Beznosov for their contributions to this research.

Testing and evaluating virus detectors for handheld devices 147

References

1. Conry-Murray, A.: Behavior blocking stops unknown mali-
cious code. Netw. Mag. (2002) http://www.networkmaga-
zine.com

2. Marx, A.: A guideline to anti-malware-software testing. In:
European Institute for Computer Anti-Virus Research (EI-
CAR) 2000 Best Paper Proceedings, 2000. pp. 218–253.

3. Morales, J.A., Clarke, P.J., Deng, Y.: Testing and evaluation
of virus detectors for handheld devices. In: The Proceedings
of NIST Workshop on Software Security Assurance Tools,
Techniques, and Metrics (SSATTM), pp. 67–74 (2004)

4. Nachenberg, C.: Computer virus-antivirus coevolution.
Commun. ACM, 40(1):46–51 (1997). http://doi.acm.org/
10.1145/242857.242869

5. Nachenberg, C.: Behavior blocking: the next step in anti-virus
protection. Security Focus, March (2002) http://www.security-
focus.com/infocus/1557

6. Ntafos, S.C.: On random and p1artition testing. In: IS-
STA ’98: Proceedings of the 1998 ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis,
pp. 42–48 ACM Press, New York (1998).http://doi.acm.
org/10.1145/271771.271785

7. Peikari, C., Fogie S., Ratter/29A.: Details emerge on the first
windows mobile virus. informit.com (2004) http://www.infor-
mit.com/articles/article.asp?p=337069.

8. Peikari, C., Fogie, S., Ratter/29A, Read, J.: Reverse
engineering the first pocket pc trojan. Sams Pub-
lishing (2004) http://www.samspublishing.com/articles/arti-
cle.asp?p=340544.

9. Symantec antivirus research center: http://securityre-
sponse.symantec.com/avcenter/

10. Denning, D.: Cyberterrorism testimony before the special
oversight panel of terrorism committee on armed services,
house of representatives, May (2000) http://www.cs.george-
town.edu/ denning/infosec/cyberterror.html

11. Mackey D., Gossels J., Johnson, B.C.: Securing your handheld
devices. The ISSA Journal, April (2004). http://www.syste-
mexperts.com/tutors/ISSAHandheldArticle.pdf

12. Filiol, E. Computer Viruses: from Theory to Applications.
IRIS International series, Springer, Berlin Heidelberg New-
york Verlag, (2005). ISBN 2-287-23939-1

13. Filiol, E.: Malware pattern scanning schemes secure against
black box analysis. J. Comput. Virol., EICAR 2006 Special
Issue, (2), 1 (2006)

14. Messmer, E.: Behavior blocking repels new viruses. Net-
work World Fusion, January (2002) http://www.nwfu-
sion.com/news/2002/0128antivirus.html

15. Cohen, F.: A Short Course on Computer Viruses. Wiley Pro-
fessional Computing (1994). ISBN 0-471-00769-2

16. Schneider, F.: Enforceable security policies. ACM Trans.
Inf. Syst. Security, 3(1):30–50, 2000. http://doi.acm.org/
10.1145/353323.353382

17. Vahid, F., Givargis, T.: Embedded System Design a Unified
Hardware/Software Introduction. Wiley (2002) ISBN 0-471-
38678-2

18. Francia, G.: Embedded system programming. J Comput Sci
Colleges 17(2), (2001)

19. Zar, J.H.: Biostatistical Analysis. Prentice-Hall, New Jersey
(1999). Second edition, ISBN 0-130-81542-X

20. Zhu, H., Hall, P., May, J.: Software unit test coverage and
adequacy. ACM Comput. Surve. 29(4), 366–427 (1997)

21. Ibm research. virus timeline. http://www.research.ibm.com/
antivirus/timeline.htm

22. Myers, G.J. The Art of Software Testing. Wiley (2004). Second
edition, ISBN 0-471-46912-2

23. Sheaffer, R.L., McClave J.T.: Probability and Statistics for
Engineers. International Thomson Publishing and Wadsworth
Publishing Company (1996) Fourth edition, ISBN 0-534-
20964-5

24. Christodorescu, M., Jha, S.: Testing malware detectors. IS-
STA ’04: Proceedings of the 2004 ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, pp. 34–44
(2004) http://doi.acm.org/10.1145/1007512.1007518

25. National vulnerability database. http://nvd.nist.gov/
26. Singh, P., Lakhotia, A.: Analysis and detection of com-

puter viruses and worms: an annotated bibliography. In:
ACM SIGPLAN Notices, Vol.37, pp. 29–35 (2002) http://doi.
acm.org/10.1145/568600.568608

27. Szor, P.: The Art of Computer Virus Research and Defense.
Symantec Press and Addison-Wesley (2005). ISBN 9-780321-
304544

28. Symantec Security White Paper: Wireless handheld and
smartphone security. Technical report, Symantec Corporation
(2003). http://www.symantec.com

29. Ford, R.: The wrong stuff? IEEE Security Privacy (2004)
30. Fogie, S.: Pocket pc abuse: to protect and destroy. In: Black

Hat USA (2004) http://www.airscanner.com/pubs/Black-
Hat2004.pdf

31. Foley, S.: Dumigan, R.: Are handheld viruses a sig-
nificant threat? Commun ACM 44(1):105–107 (2001)
http://doi.acm.org/10.1145/357489.357516

32. Gordon, S., Howard, F.: Antivirus software testing for the new
millennium. In: Proceedings of National Information Systems
Security Conference (NISSC), (2000). http://csrc.nist.gov/nis-
sc/2000/proceedings/papers/038.pdf

33. Gordon, S., Ford, R.: Real world anti-virus product reviews
and evaluations - the current state of affairs. In: Proceedings of
the 1996 National Information Systems Security Conference
(1996)

34. Gordon, S., Ford, R.: Computer crime revisited: the evolu-
tion of definition and classification. In: European Institute for
Computer Anti-Virus Research (EICAR) (2006)

35. Stata release 9.0. Stata Corporation (1999); College Station,
Texas

36. Winrar. http://www.win-rar.com/

	Testing and evaluating virus detectors for handheld devices
	Abstract
	Introduction
	Computer viruses and handheld devices
	Related work
	Testing and evaluation
	Formal model of virus transformation
	Test categories
	Transposition of source code
	Insertion of trash source code
	Substitution of source code
	Label renaming
	Compression of a virus executable
	Test implementation
	Testing environment
	Description of test cases
	Transposition of source code
	Insertion of trash source code
	Substitution of source code
	Label renaming
	Compression of a virus executable
	Test results
	Inference analysis
	Statistical analysis
	False negative production analysis
	False negative pairwise Analysis by software
	Analysis by individual categories
	Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

